The unpaved road network of a surface mine is extensive, comprising numerous roads of varying construction and material qualities with highly variable traffic volumes. Existing haul road maintenance management systems (MMSs) work well for predictable traffic volumes, but for complex mine road networks, the MMS becomes onerous and results in suboptimal road maintenance strategies, with the attendant increase in total road-user costs and reduction in service. A real-time MMS was thus sought to overcome the deficiencies of existing systems for mine roads. Because most large mines operate trucks with onboard diagnostic data collation, linked through a centralized communication and Global Positioning System backbone, it was proposed that road condition could be monitored on a real-time basis through onboard vibration signature analysis. A real-time mine haul road MMS was developed. Mine road maintenance practices were reviewed. The real-time system architecture was devised, and a field trial was conducted of onboard vibration signature assessment. Trial results were evaluated in the light of road defect signature recognition, analysis, signature repeatability, and system limitations. This approach is applicable to other situations, such as a network of district roads, subject to an analysis of economic feasibility. The conclusion is reached that modern technology has the potential to apply maintenance as and where needed, with possible reductions in authority cost and an improvement in service provided to road users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.