Artificial intelligence (AI) has recently become an object of interest for specialists from various fields of science and technology, including healthcare professionals. Significantly increased funding for the development of AI models confirms this fact. Advances in machine learning (ML), availability of large data sets, and increasing processing power of computers promote the implementation of AI in many areas of human activity. Being a type of AI, machine learning allows automatic development of mathematical models using large data sets. These models can be used to address multiple problems, such as prediction of various events in obstetrics and neonatology. Further integration of artificial intelligence in perinatology will facilitate the development of this important area in the future. This review covers the main aspects of artificial intelligence and machine learning, their possible application in healthcare, potential limitations and problems, as well as outlooks in the context of AI integration into perinatal medicine. Key words: artificial intelligence, cardiotocography, neonatal asphyxia, fetal congenital abnormalities, fetal hypoxia, machine learning, neural networks, prediction, prognosis, perinatal risk, prenatal diagnosis
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.