The problem of non-scalability of structures under impact loads caused by strainrate effects is solved in this article by properly correcting the impact velocity. The technique relies on the use of an alternative dimensionless basis, together with a mathematical model which allows the calculation of a correction factor for the impact velocity. This new velocity, when applied to the model, makes it to assure the satisfaction of the scaling laws. The indirect similitude method detailed here is applied to two strain-rate sensitive structures, a double plate under in-plane impact and a beam subjected to a blast load. The results show a very good agreement so that the model and a prototype made from strain rate sensitive materials behave the same.
a b s t r a c tIt is well known that structures subjected to dynamic loads do not follow the usual similarity laws when the material is strain rate sensitive. As a consequence, it is not possible to use a scaled model to predict the prototype behaviour. In the present study, this problem is overcome by changing the impact velocity so that the model behaves exactly as the prototype. This exact solution is generated thanks to the use of an exponential constitutive law to infer the dynamic flow stress. Furthermore, it is shown that the adopted procedure does not rely on any previous knowledge of the structure response. Three analytical models are used to analyze the performance of the technique. It is shown that perfect similarity is achieved, regardless of the magnitude of the scaling factor. For the class of material used, the solution outlined has long been sought, inasmuch as it allows perfect similarity for strain rate sensitive structures subject to impact loads.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.