Monte Carlo methods are used to calculate a complete TG-43 dosimetry parameter data set for 27 low-energy photon emitting brachytherapy sources (18 125I and 9 l03Pd). All Monte Carlo calculations are performed using the EGSnrc user-code BrachyDose. TG-43 dosimetry parameters, including dose rate constants, radial dose functions (with functional fitting parameters), and anisotropy data, are calculated with finer spatial resolution, greater range of distances, and smaller uncertainties than data currently available in the literature for many of these sources. In particular, for most of the seeds, this is the first time that anisotropy data have been tabulated at distances less than 0.5 cm from the source. These calculations employ the state-of-the-art XCOM photon cross sections, and detailed source geometries are modeled using Yegin's multigeometry package. This data set serves as a completely independent verification of the currently available dosimetry parameters calculated using other Monte Carlo codes, including MCNP and PTRAN. This report also describes the Carleton Laboratory for Radiotherapy Physics TG-43 Parameter Database, a publicly accessible web site (at http://www.physics.carleton.ca/clrp/seed_database/) through which all of the data calculated for this study can be accessed. Also available on the web site are descriptions of the methods and Monte Carlo models used in this study and comparisons of data calculated in this study with data calculated by other authors.
In this study, BrachyDose, a recently developed EGSnrc Monte Carlo code for rapid brachytherapy dose calculations, has been benchmarked by reproducing previously published dosimetry parameters for three brachytherapy seeds with varied internal structure and encapsulation. Calculations are performed for two 125I seeds (Source Tech Medical Model STM1251 and Imagyn isoSTAR model 12501) and one l03Pd source (Theragenics Model 200). Voxel size effects were investigated with dose distribution calculations for three voxel sizes: 0.1 x 0.1 x 0.1 mm(3), 0.5 x 0.5 x 0.5 mm(3), and 1 X 1 X 1 mm(3). In order to minimize the impact of voxel size effects, tabulated dosimetry data for this study consist of a combination of the three calculations: 0.1 X 0.1 x 0.1 mm(3) voxels for distances in the range of 0
This study presents the results of EGSnrc Monte Carlo calculations of the dose distribution surrounding a high dose rate 169Yb brachytherapy source and 14 high dose rate and pulsed dose rate 192Ir brachytherapy sources. Energy-weighted spectra of emitted photons, a full set of TG-43 dosimetry parameters, along-away dose tables, and a description of the materials and geometry used for each source are provided. In addition to this, separate tallies are made of the dose contributed from primary, single-scattered, and multiply-scattered photons. Separation of dose in this manner allows one to use convolution/superposition methods to calculate the dose surrounding a brachytherapy source accounting for a non-homogeneous medium. The effect of phantom size on TG-43 dosimetry parameters and scattered dose is also investigated for the 192Ir microSelectron v2 HDR source. This paper describes the calculation methods and presents the dose rate constants calculated for each source with the full set of dosimetry data being available online at the Carleton Laboratory for Radiotherapy Physics brachytherapy database (http://www.physics.carleton.ca/clrp/seed_database/).
A Monte Carlo study of dosimetry for eye plaque brachytherapy is performed. BrachyDose, an EGSnrc user code which makes use of Yegin's multi-geometry package, is used to fully model 125I (model 6711) and 103Pd (model 200) brachytherapy seeds and the standardized plaques of the Collaborative Ocular Melanoma Study (COMS). Three-dimensional dose distributions in the eye region are obtained. In general, dose to water is scored; however, the implications of replacing water with eye tissues are explored. The effect of the gold alloy (Modulay) backing is investigated and the dose is found to be sensitive to the elemental composition of the backing. The presence of the silicone polymer (Silastic) seed carrier results in substantial dose decreases relative to water, particularly for 103Pd. For a 20 mm plaque with a Modulay backing and Silastic insert, fully loaded with 24 seeds, the dose decrease relative to water is of the order of 14% for 125I and 20% for 103Pd at a distance of 1 cm from the inner sclera along the plaque's central axis. For the configurations of seeds used in COMS plaques, interseed attenuation is a small effect within the eye region. The introduction of an air interface results in a dose reduction in its vicinity which depends on the plaque's position within the eye and the radionuclide. Introducing bone in the eye's vicinity also causes dose reductions. The dose distributions in the eye for the two different radionuclides are compared and, for the same prescription dose, 103Pd generally offers a lower dose to critical normal structures. BrachyDose is sufficiently fast to allow full Monte Carlo dose calculations for routine clinical treatment planning.
egs_brachy is a versatile and fast Monte Carlo (MC) code for brachytherapy applications. It is based on the EGSnrc code system, enabling simulation of photons and electrons. Complex geometries are modelled using the EGSnrc C++ class library and egs_brachy includes a library of geometry models for many brachytherapy sources, in addition to eye plaques and applicators. Several simulation efficiency enhancing features are implemented in the code. egs_brachy is benchmarked by comparing TG-43 source parameters of three source models to previously published values. 3D dose distributions calculated with egs_brachy are also compared to ones obtained with the BrachyDose code. Well-defined simulations are used to characterize the effectiveness of many efficiency improving techniques, both as an indication of the usefulness of each technique and to find optimal strategies. Efficiencies and calculation times are characterized through single source simulations and simulations of idealized and typical treatments using various efficiency improving techniques. In general, egs_brachy shows agreement within uncertainties with previously published TG-43 source parameter values. 3D dose distributions from egs_brachy and BrachyDose agree at the sub-percent level. Efficiencies vary with radionuclide and source type, number of sources, phantom media, and voxel size. The combined effects of efficiency-improving techniques in egs_brachy lead to short calculation times: simulations approximating prostate and breast permanent implant (both with (2 mm) voxels) and eye plaque (with (1 mm) voxels) treatments take between 13 and 39 s, on a single 2.5 GHz Intel Xeon E5-2680 v3 processor core, to achieve 2% average statistical uncertainty on doses within the PTV. egs_brachy will be released as free and open source software to the research community.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.