We investigate glassy dynamical properties of one-component three-dimensional system of particles interacting via pair repulsive potential by the molecular dynamic simulation in the wide region of densities. The glass state is superfragile and it has high glass-forming ability. The glass transition temperature T(g) has a pronounced minimum at densities where the frustration is maximal.
Using molecular dynamics simulations we show that a one-component system can be driven to a three-dimensional decagonal (10-fold) quasicrystalline state just by purely repulsive, isotropic and monotonic interaction pair potential with two characteristic length scales; no attraction is needed. We found that self-assembly of a decagonal quasicrystal from a fluid can be predicted by two dimensionless effective parameters describing the fluid structure. We demonstrate stability of the results under changes of the potential by obtaining the decagonal order for three particle systems with different interaction potentials, both purely repulsive and attractive, but with the same values of the effective parameters. Our results suggest that soft matter quasicrystals with decagonal symmetry can be experimentally observed for the same systems demonstrating the dodecagonal order for an appropriate tuning of the effective parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.