Some of the factors involved in the design of a radar pulse compression system are discussed. These include the compression ratio, the detailed characteristics of the signal, the sidelobe level of the receiver output waveform (signal autocorrelation function), the sensitivity of the sidelobe level to Doppler frequency shift in the signal, and the relative complexity of the equipment required to generate and receive the signal. A signal of Gaussian envelope and linear frequency modulation is shown to have an autocorrelation function of Gaussian shape. When the receiver is designed to autocorrelate the linear FM Gaussian signal, it is shown that the shape of the receiver output waveform does not change when the input signal has a Doppler frequency shift. The design and construction of equipment used to generate and receive the signal are discussed. In operating equipment with a compression ratio of about 50 to one, sidelobe levels 40 db below the peak amplitude of the receiver output waveform are achieved, and the shape of the receiver output waveform does not change appreciably until the Doppler frequency shift exceeds 25 per cent of the 3-db signal bandwidth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.