The HIV-1 biological phenotype is a practical, binary marker for progression to AIDS, which is independent of decreased CD4+ cell counts and antigenemia. Appearance of SI variants, occurring 2 years before progression to AIDS on the average, is predictive for a significantly increased rate of CD4+ cell decline.
Sequential human immunodeficiency virus (HIV) isolates, recovered from a panel of longitudinally collected peripheral blood mononuclear cells obtained from 20 initially asymptomatic HIV-seropositive homosexual men, were studied for differences in replication rate, syncytium-inducing capacity, and host range. Eleven individuals remained asymptomatic; nine progressed to acquired immunodeficiency syndrome (AIDS) or AIDS-related complex (ARC) at the time point at which the last HIV isolate was obtained. In 16 individuals, only non-syncytium-inducing (NSI) isolates, with a host range restricted to mononuclear cells, were observed. From four individuals, high-replicating, syncytium-inducing (SI) isolates that could be transmitted to the H9, RC2A, and U937 cell lines were recovered. From two of these four individuals, SI isolates were obtained throughout the observation period. In the two others, a transition from NSI to SI HIV isolates was observed during the period of study. Three of these four individuals developed ARC or AIDS 9 to 15 months after the first isolation of an SI isolate. With the exception of the two individuals in whom a transition from NSI to SI isolates was observed, within a given individual the replication rate of sequential HIV isolates was constant. A significant correlation was found between the mean replication rate of isolates obtained from an individual and the rate of CD4+ cell decrease observed in this individual. In individuals with low-replicating HIV isolates, no significant CD4+ cell loss was observed. In contrast, recovery of high-replicating isolates, in particular when these were SI isolates, was associated with rapid decline of CD4+ cell numbers and development of ARC or AIDS. These findings indicate that variability in the biological properties of HIV isolates is one of the factors influencing the course of HIV infection.
Human immunodeficiency virus (HIV), the causative agent of AIDS, infects human lymphocytes and monocytes. An interaction between the viral envelope gp 120 and CD4 protein is required to initiate an infectious cycle. HIV infection in vitro induces syncytium formation by cell-to-cell fusion; this aspect of viral cytopathogenicity is even more dependent on gp120-CD4 interactions. That gp120 is extremely heavily glycosylated (31-36 N-linked glycans per molecule), suggests involvement of N-linked glycans in the gp120-CD4 interaction. We therefore investigated the effects of castanospermine, 1-deoxynojirimycin (dNM) and 1-deoxymannojirimycin (dMM), three trimming glycosidase inhibitors which perturb N-linked glycan structure, on induction of the formation of syncytium between HIV-infected and CD4-expressing cells. The glucosidase inhibitors castanospermine and dNM, but not the mannosidase inhibitor dMM, inhibited syncytium formation and interfered with infectivity. The potential of glucosidase inhibitors as anti-HIV therapeutic agents deserves further investigation, especially because dNM and related compounds show little toxicity in vitro and in vivo.
Nineteen individuals were studied for virologic and immunologic events during primary human immunodeficiency virus type 1 (HIV-1) infection. In 16 individuals only non-syncytium-inducing (NSI) isolates were detected; syncytium-inducing (SI) isolates were obtained from 3. Studies of transmitter-recipient pairs indicated that both NSI variants and SI variants were transmitted and that SI variants may be suppressed in the recipient. CD4+ T cells remained in the normal range in 15 of 16 individuals with NSI isolates but rapidly declined in all 3 individuals with SI variants, 1 of whom was treated with zidovudine. The most marked increase in CD8+ T cells and activated CD8+ T cells was observed in individuals with the most pronounced clinical signs of acute HIV-1 infection. Activated CD8+ T cells were only transiently elevated in individuals with SI variants, suggesting that an impaired cellular anti-HIV-1 immune response plays a role in the rapid progression to AIDS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.