Reconstituted Sendai-viral envelopes (RSVE) were fused with hepatoma tissue-culture (HTC) cells, thereby introducing viral membrane glycoproteins into the plasma membrane [Earl, Billett, Hunneyball & Mayer (1987) Biochem. J. 241, 801-807]. Fractionation of homogenized cells on Nycodenz gradients shows that much of the viral 125I-labelled HN and F proteins were rapidly sequestered into a dense fraction distinct from fractions containing plasma membrane, lysosomes and mitochondria. Electron microscopy (results not shown) indicates that the dense fraction contains nuclear residues, multivesicular structures, dense bodies and fibrous structures. Both the dense fraction and a hexosaminidase-enriched fraction contain trichloroacetic acid-insoluble radioactivity, including intact 125I-labelled viral proteins. The viral proteins are progressively transferred from the dense fraction to the hexosaminidase-enriched fraction; the transfer is retarded by 50 micrograms of leupeptin/ml. Trichloroacetic acid-soluble radiolabel is progressively released into the culture medium as the proteins are degraded. Within 5 h after transplantation of viral HN and F proteins into recipient cells, a proportion (approx. 45%) of the 125I-labelled glycoproteins cannot be extracted by sequentially treating cells with digitonin (1 mg/ml), Triton X-100 (1%, w/v) and 0.3 M-KI. HN and F proteins in the non-extractable residue are tightly associated with nuclear-intermediate-filament (vimentin) material, as shown by Western blots and electron microscopy. The viral proteins are progressively transferred out of the nuclear-intermediate-filament residue; the transfer is slowed when cells are cultured with leupeptin. The data are consistent with the notion that transplanted viral HN and F proteins are sequestered to a perinuclear site in tight association with intermediate filaments before transfer into the autophagolysosomal system for degradation.
Reconstituted Sendai-viral envelopes (RSVE) were produced by the method of Vainstein, Hershkovitz, Israel & Loyter [(1984) Biochim. Biophys. Acta 773, 181-188]. RSVE are fusogenic unilamellar vesicles containing two transmembrane glycoproteins: the HN (haemagglutinin-neuraminidase) protein and the F (fusion) factor. The fate of the viral proteins after fusion-mediated transplantation of RSVE into hepatoma (HTC) cell plasma membranes was studied to probe plasma-membrane protein degradation. Both protein species are degraded at similar, relatively slow, rates (t1/2 = 67 h) in HTC cells fused with RSVE in suspension. Even slower degradation rates for HN and F proteins (t1/2 = 93 h) were measured when RSVE were fused with HTC cells in monolayer. Lysosomal degradation of the transplanted viral proteins is strongly implicated by the finding that degradation of HN and F proteins is sensitive to inhibition by 10 mM-NH4Cl (81%) and by 50 micrograms of leupeptin/ml (70%).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.