Zirconium carbide is an attractive ceramic material due to its unique properties such as high melting point, good thermal conductivity, and chemical resistance. The controlled preparation of zirconium carbide films of superstoichiometric, stoichiometric, and substoichiometric compositions has been achieved utilizing zirconium tetrachloride and methane precursor gases in an atmospheric pressure high temperature chemical vapor deposition system. Laminar and equiaxial microcrystalline morphologies were obtained for superstoichiometric and substoichiometric zirconium carbide; respectively, allowing cursory metallographic identification of composition. Observed reductions in film density associated with zirconium carbide films that contain additional free carbon or excess zirconium are reported. These changes in film density were found to be consistent with compositional changes. An apparently linear relationship (correlation of 0.99) between methane flow in this chemical vapor deposition system and zirconium carbide stoichiometry in the substoichiometric range deposited above ZrC0.61 has been observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.