This study examines the problem of belief revision, defined as deciding which of several initially accepted sentences to disbelieve, when new information presents a logical inconsistency with the initial set. In the first three experiments, the initial sentence set included a conditional sentence, a non-conditional (ground) sentence, and an inferred conclusion drawn from the first two. The new information contradicted the inferred conclusion. Results indicated that conditional sentences were more readily abandoned than ground sentences, even when either choice would lead to a consistent belief state, and that this preference was more pronounced when problems used natural language cover stories rather than symbols. The pattern of belief revision choices differed depending on whether the contradicted conclusion from the initial belief set had been a modus ponens or modus tollens inference. Two additional experiments examined alternative model-theoretic definitions of minimal change to a belief state, using problems that contained multiple models of the initial belief state and of the new information that provided the contradiction. The results indicated that people did not follow any of four formal definitions of minimal change on these problems. The new information and the contradiction it offered was not, for example, used to select a particular model of the initial belief state as a way of reconciling the contradiction.The preferred revision was to retain only those initial sentences that had the same, unambiguous truth value within and across both the initial and new information sets. The study and results are presented in the context of certain logicbased formalizations of belief revision, syntactic and model-theoretic representations of belief states, and performance models of human deduction. Principles by which some types of sentences might be more "entrenched" than others in the face of contradiction are also discussed from the perspective of induction and theory revision.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.