Rationale: The mechanistic basis for cardiac and renal dysfunction in sepsis is unknown. In particular, the degree and type of cell death is undefined. Objectives: To evaluate the degree of sepsis-induced cardiomyocyte and renal tubular cell injury and death. Methods: Light and electron microscopy and immunohistochemical staining for markers of cellular injury and stress, including connexin-43 and kidney-injury-molecule-1 (Kim-1), were used in this study. Measurements and Main Results: Rapid postmortem cardiac and renal harvest was performed in 44 septic patients. Control hearts were obtained from 12 transplant and 13 brain-dead patients. Control kidneys were obtained from 20 trauma patients and eight patients with cancer. Immunohistochemistry demonstrated low levels of apoptotic cardiomyocytes (,1-2 cells per thousand) in septic and control subjects and revealed redistribution of connexin-43 to lateral membranes in sepsis (P , 0.020). Electron microscopy showed hydropic mitochondria only in septic specimens, whereas mitochondrial membrane injury and autophagolysosomes were present equally in control and septic specimens. Control kidneys appeared relatively normal by light microscopy; 3 of 20 specimens showed focal injury in approximately 1% of renal cortical tubules. Conversely, focal acute tubular injury was present in 78% of septic kidneys, occurring in 10.3 6 9.5% and 32.3 6 17.8% of corticomedullary-junction tubules by conventional light microscopy and Kim-1 immunostains, respectively (P , 0.01). Electron microscopy revealed increased tubular injury in sepsis, including hydropic mitochondria and increased autophagosomes. Conclusions: Cell death is rare in sepsis-induced cardiac dysfunction, but cardiomyocyte injury occurs. Renal tubular injury is common in sepsis but presents focally; most renal tubular cells appear normal. The degree of cell injury and death does not account for severity of sepsis-induced organ dysfunction.Keywords: sepsis; apoptosis; necrosis; autophagy; kidney Sepsis causes profound myocardial depression, and echocardiography frequently reveals severe biventricular dysfunction (1-5). Sepsis also induces renal insufficiency in 30 to 60% of patients, up to half of whom require dialysis (6-10). The mechanistic basis for cardiac and renal dysfunction occurring in sepsis is controversial (1,5,7,9,(11)(12)(13)(14)(15)(16). The degree to which apoptosis, necrosis, or autophagy contribute to cardiac and renal dysfunction in sepsis is unresolved (2,3,(16)(17)(18)(19).Although a few well controlled studies have been performed, extensive cell death in hearts or kidneys in patients dying of sepsis has not been described, leading investigators to postulate that cellular "hibernation" or metabolic suppression and not cell death is the basis of sepsis-induced organ failure (11,13,14,16,18,(20)(21)(22). Cardiac dysfunction in sepsis is reversible, and the majority of renal failure patients who survive sepsis recover baseline renal function; these observations are consistent with organ "hibernation" (1, ...
Immediate bedside availability of ultrasound resources can dramatically improve the ability of critical care physicians to care for critically ill patients. Anesthesia--critical care medicine training should have definitive expectations and performance standards for basic CCUS interpretation by anesthesiology--critical care specialists. The learning goals in this review reflect current trends in the multispecialty critical care environment where ultrasound-based diagnostic strategies are already frequently applied. These competencies should be formally taught as part of an established anesthesiology-critical care medicine graduate medical education programs.
Vaccine-preventable diseases (VPDs) such as measles and pertussis are becoming more common in the United States. This disturbing trend is driven by several factors, including the antivaccination movement, waning efficacy of certain vaccines, pathogen adaptation, and travel of individuals to and from areas where disease is endemic. The anesthesia-related manifestations of many VPDs involve airway complications, cardiovascular and respiratory compromise, and unusual neurologic and neuromuscular symptoms. In this article, we will review the presentation and management of 9 VPDs most relevant to anesthesiologists, intensivists, and other hospital-based clinicians: measles, mumps, rubella, pertussis, diphtheria, influenza, meningococcal disease, varicella, and poliomyelitis. Because many of the pathogens causing these diseases are spread by respiratory droplets and aerosols, appropriate transmission precautions, personal protective equipment, and immunizations necessary to protect clinicians and prevent nosocomial outbreaks are described.
IntroductionRandomized controlled trials suggest clinical outcomes may be improved with dexmedetomidine as compared with benzodiazepines; however, further study and validation are needed. The objective of this study was to determine the clinical effectiveness of a sedation protocol minimizing benzodiazepine use in favor of early dexmedetomidine.MethodsWe conducted a before-after study including adult surgical and medical intensive care unit (ICU) patients requiring mechanical ventilation and continuous sedation for at least 24 hours. The before phase included consecutive patients admitted between 1 April 2011 and 31 August 31 2011. Subsequently, the protocol was modified to minimize use of benzodiazepines in favor of early dexmedetomidine through a multidisciplinary approach, and staff education was provided. The after phase included consecutive eligible patients between 1 May 2012 and 31 October 2012.ResultsA total of 199 patients were included, with 97 patients in the before phase and 102 in the after phase. Baseline characteristics were well balanced between groups. Use of midazolam as initial sedation (58% versus 27%, P <0.0001) or at any point during the ICU stay (76% versus 48%, P <0.0001) was significantly reduced in the after phase. Dexmedetomidine use as initial sedation (2% versus 39%, P <0.0001) or at any point during the ICU stay (39% versus 82%, P <0.0001) significantly increased. Both the prevalence (81% versus 93%, P =0.013) and median percentage of days with delirium (55% (interquartile range (IQR), 18 to 83) versus 71% (IQR, 45 to 100), P =0.001) were increased in the after phase. The median duration of mechanical ventilation was significantly reduced in the after phase (110 (IQR, 59 to 192) hours versus 74.5 (IQR, 42 to 148) hours, P =0.029), and significantly fewer patients required tracheostomy (20% versus 9%, P =0.040). The median ICU length of stay was 8 (IQR, 4 to 12) days in the before phase and 6 (IQR, 3 to 11) days in the after phase (P =0.252).ConclusionsImplementing a sedation protocol that targeted light sedation and reduced benzodiazepine use led to significant improvements in the duration of mechanical ventilation and the requirement for tracheostomy, despite increases in the prevalence and duration of ICU delirium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.