Caloric imbalance, particularly in critical periods of growth and development, is often the underlying cause of growth abnormalities. Serum levels of leptin are elevated in obesity and are low in malnutrition and malabsorption. The aim of the present study was to determine whether leptin integrates energy levels and growth in vivo, as shown previously in our ex vivo experiments, even in the presence of caloric restriction. In the first part of the study, mice were divided into three groups. Two groups were fed ad libitum and received leptin or vehicle only, and the third group was pair-fed with the group injected with leptin to dissociate leptin's effect on growth from its effect on food consumption. Mice given leptin had a significantly greater tibial length than untreated pair-fed animals and a similar tibial length as control mice fed ad libitum despite their lower weight. In addition, leptin significantly increased the overall size of the epiphyseal growth plate by 11%. On immunohistochemistry and in situ hybridization studies, leptin stimulated both the proliferation and differentiation of tibial growth plate chondrocytes without affecting the overall organization of the plate. There was also a marked increase in the expression and level of IGF-IR. In the second part of the study, two groups of mice were fed only 60% of their normal chow; one was injected with leptin, and the other was injected with vehicle alone. Caloric deprivation by itself reduced serum levels of IGF-I by 70% and the length of the tibia by 5%. Leptin treatment corrected the fasting-induced growth deficiency, but further reduced the level of serum IGF-I. These results indicate that leptin stimulates growth even in the presence of caloric restriction independently of peripheral IGF-I.
Overdosage of IGF-I can lead to androgenization, a previously undescribed undesirable effect of IGF-I. Long-term IGF-I treatment necessitates progressive adjustment of the IGF-I dose to avoid overtreatment.
Laron syndrome (LS) is a hereditary form of GH resistance due to molecular defects in the GH receptor (GHR). Most of the identified mutations are located in the extracellular domain of the receptor, resulting in a lack of serum GHBP in the majority of LS patients. We present an LS patient with supranormal levels of serum GHBP, in addition to 35 of her relatives. The proband is a 3.5 year-old Druse girl with severe short stature (height SDS -5.1), high GH (250 μ^), low IGF-I (2.7 nmol/1) and IGFBP-3 (410 μg/l), both unresponsive to exogenous GH. The binding capacity of the serum GHBP was 22 nM (adult reference serum, 0.7 nM), with an affinity constant Ka = 1.9xl0 9 M" 1 comparable to that of normal sera (Ka = 1.7-2.1X10 9 M'). The apparent MW of the GHBP was -60-80 kDa, similar to that of control sera. In the proband's sister, parents, grandparents and uncles, extremely high GHBP values were observed (43.0 ±4.8 RSB, n=10) compared with normal adults (0.81 ± 0.06 RSB) (p«0.001). The remaining subjects had normal or moderately elevated GHBP levels. Serum GH in adults with high GHBP was significantly elevated above control values (6.0 ± 0.9 μg/l vs 0.76 ± 0.13 μg/l, pO.OOl). Serum IGF-I and
Sex hormones may influence longitudinal growth, either indirectly, by affecting the growth-hormone-insulin-like growth factor I (IGF-I) axis, or directly, by affecting changes within the epiphyseal growth plate (EGP). The aim of the present study was to investigate the effects of letrozole, an aromatase inhibitor, on longitudinal growth and changes in the EGP in vivo. Eighteen peripubertal male mice were divided into three groups. The first group was killed at baseline, the second was injected with letrozole (Femara) s.c., 2 mg/kg body weight/day, for 10 days, and the third was injected with the vehicle alone. Serum testosterone levels were found to be significantly higher in the treated group than in the controls. Letrozole induced a significant increase in body weight, tail length and serum growth hormone level, but had no significant effect on the level of serum IGF-I. On histomorphometric study, there was a significant increase (12%) in EGP height in the treated animals compared with controls. Immunohistochemistry showed a 3·4-fold letrozole-induced increase in the proliferation of the EGP chondrocytes, as estimated by the number of proliferation cell nuclear antigen-stained cells, and a decrease in the differentiation of the EGP chondrocytes, as estimated by type X collagen staining. Letrozole did not interfere with type II collagen levels. The study group also showed a twofold increase in the number of IGF-I receptor-positive cells compared with controls. In conclusion, the aromatase inhibitor, letrozole, appears to increase the linear growth potential of the EGP in mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.