This study investigated the effect of nanosilver/water-in-kerosene emulsion on thermal and radiative characteristics and pollutant emissions of a liquid burner. The results were compared with the corresponding values resulted from neat kerosene. Light microscopic imaging was used to study microexplosion of the fuel droplets. Also, combining chemiluminescence technique and measurement of pollutant concentrations, a qualitative study was carried out to find out the effect of CO, CO2, water vapor, and intermediate soot particles on the flame emissivity coefficient. The results showed that the Brownian motion of silver nanoparticles and localized convection between nanoparticles and the adjacent fluids increased the evaporation rate of nanoemulsion droplets and the rate of their mixing with oxidizing air. Besides the nanoparticles effect, the secondary injection of nanoemulsion due to microexplosion of water droplets enhanced the mixing rate of nanoemulsion fuel and oxidizing air. Although absorption of heat by water content of nanoemulsion fuel decreased the flame temperature, the nanoemulsion fuel, compared with neat kerosene, enhanced the average radiation of flame by 23%. Further, the results indicated that although CO and CO2 did not change significantly in amount, NOx emission reduced as much as 23.7% when the nanosilver/water-in-kerosene emulsion, instead of neat kerosene, was used.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.