Large mammals, including humans, save much of the energy needed for running by means of elastic structures in their legs and feet. Kinetic and potential energy removed from the body in the first half of the stance phase is stored briefly as elastic strain energy and then returned in the second half by elastic recoil. Thus the animal runs in an analogous fashion to a rubber ball bouncing along. Among the elastic structures involved, the tendons of distal leg muscles have been shown to be important. Here we show that the elastic properties of the arch of the human foot are also important.
This paper supplies quantitative data on the hind- and forelimb musculature of common chimpanzees (Pan troglodytes) and calculates maximum joint moments of force as a contribution to a better understanding of the differences between chimpanzee and human locomotion. We dissected three chimpanzees, and recorded muscle mass, fascicle length, and physiological cross-sectional area (PCSA). We also obtained flexion/extension moment arms of the major muscles about the limb joints. We find that in the hindlimb, chimpanzees possess longer fascicles in most muscles but smaller PCSAs than are predicted for humans of equal body mass, suggesting that the adaptive emphasis in chimpanzees is on joint mobility at the expense of tension production. In common chimpanzee bipedalism, both hips and knees are significantly more flexed than in humans, necessitating muscles capable of exerting larger moments at the joints for the same ground force. However, we find that when subject to the same stresses, chimpanzee hindlimb muscles provide far smaller moments at the joints than humans, particularly the quadriceps and plantar flexors. In contrast, all forelimb muscle masses, fascicle lengths, and PCSAs are smaller in humans than in chimpanzees, reflecting the use of the forelimbs in chimpanzee, but not human, locomotion. When subject to the same stresses, chimpanzee forelimb muscles provide larger moments at the joints than humans, presumably because of the demands on the forelimbs during locomotion. These differences in muscle architecture and function help to explain why chimpanzees are restricted in their ability to walk, and particularly to run bipedally.
The maximum stresses to which a wide range of mammalian limb tendons could be subjected in life were estimated by considering the relative cross‐sectional areas of each tendon and of the fibres of its muscle. These cross‐sectional areas were derived from mass and length measurements on tendons and muscles assuming published values for the respective densities. The majority of the stresses are low. The distribution has a broad peak with maximum frequency at a stress of about 13 MPa, whereas the fracture stress for tendon in tension is about 100 MPa. Thus, the majority of tendons are far thicker than is necessary for adequate strength. Much higher stresses are found among those tendons which act as springs to store energy during locomotion. The acceptability of low safety factors in these tendons has been explained previously (Alexander, 1981). A new theory explains the thickness of the majority of tendons. The muscle with its tendon is considered as a combined system which delivers mechanical energy: the thickness of the tendon is optimized by minimizing the combined mass. A thinner tendon would stretch more. To take up this stretch, the muscle would require longer muscle fibres, which would increase the combined mass. The predicted maximum stress in a tendon of optimum thickness is about 10 MPa, which is within the main peak of the observed stress distribution. Individual variations from this value are to be expected and can be understood in terms of the functions of the various muscles.
Dynamic tensile tests have been performed, using physiologically relevant frequencies and stress ranges, on various tendons from the legs and tails of 10 species of mammal. No consistent differences were found between tendons from different species or different anatomical sites. Tangent Young's modulus increases from low values at low stresses to about 1·5 GPa at stresses exceeding 30 MPa. Percentage energy dissipations of 6 to 11% have been measured for different species, but the lower values are probably the most reliable. There is little or no dependence of modulus or energy dissipation on frequency, in the range 0·2–11 Hz. The tensile strength of tendon (at strain rates of the order of 0·05 s−1) is at least 100 MPa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.