The excitation step of the intramolecular CIEEL generation in the triggered cleavage of spiroadamantyl-substituted dioxetane has been studied. The electron back-transfer (BET) process versus the direct chemiexcitation of the phenolate-anion emitter have been considered as mechanistic alternatives. The observed solvent-cage effect on the CIEEL generation, manifested by the increase of the singlet chemiexcitation yield at increased viscosity, provides evidence that the BET process operates in the intramolecular CIEEL mechanism.
The kinetics of the fluoride-induced decomposition of the thermally stable silyloxyaryl-substituted spiroadamantyl dioxetanes la,b and the excited state formation of this chemically initiated electron exchange luminescence (CIEEL) have been investigated. Two limiting kinetic regimes jlash and glow have been identified, which depend on the fluoride concentration, the first at high, the second at low [F-] triggering, whose detailed kinetic analysis affords the rate constants for the deprotected dioxetanes 2a,b cleavage in acetonitrile and dimethyl sulfoxide and chemiluminescence measurements the CIEEL and phenolate 4 (CIEEL emitter) excitation yields. Chloro-substitution in the spiroadamantyl dioxetane does not affect the deprotection step k, but leads to a ca five-fold faster cleavage of the deprotected dioxetane 2, while the chemiexcitation yield is the same for both dioxetanes. The energies of the first excited singlet and triplet states of the emitting phenolate 4 were estimated by AM1 configuration interaction calculations with explicit consideration of acetonitrile as solvent (self-consistent reaction field approach). The first excited singlet and triplet state of the CIEEL emitter phenolate 4 possess m,n* character, as suggested by the n-type molecular orbitals and the large singlet-triplet energy gap. The chemiexcitation of both singlet and triplet states of the excited phenolate 4 is feasible during the dioxetanes la,b cleavage, but the experimentally determined high singlet excitation yields suggest that preferentially the phenolate 4 singlet state is populated in the fluoride ion-triggered CIEEL process.
SummaryThis study compares the ability to scavenge different peroxyl radicals and to act as chain-breaking antioxidants of monomers related to curcumin (1): dehydrozingerone (2), zingerone (3), (2Z,5E)-ethyl 2-hydroxy-6-(4-hydroxy-3-methoxyphenyl)-4-oxohexa-2,5-dienoate (4), ferulic acid (5) and their corresponding C
2-symmetric dimers 6–9. Four models were applied: model 1 – chemiluminescence (CL) of a hydrocarbon substrate used for determination of the rate constants (k
A) of the reactions of the antioxidants with peroxyl radicals; model 2 – lipid autoxidation (lipidAO) used for assessing the chain-breaking antioxidant efficiency and reactivity; model 3 – oxygen radical absorbance capacity (ORAC), which yields the activity against peroxyl radicals generated by an azoinitiator; model 4 – density functional theory (DFT) calculations at UB3LYP/6-31+G(d,p) level, applied to explain the structure–activity relationship. Dimers showed 2–2.5-fold higher values of k
A than their monomers. Model 2 gives information about the effects of the side chains and revealed much higher antioxidant activity for monomers and dimers with α,β-unsaturated side chains. Curcumin and 6 in fact are dimers of the same monomer 2. We conclude that the type of linkage between the two “halves” by which the molecule is made up does not exert influence on the antioxidant efficiency and reactivity of these two dimers. The dimers and the monomers demonstrated higher activity than Trolox (10) in aqueous medium (model 3). A comparison of the studied compounds with DL-α-tocopherol (11), Trolox and curcumin is made. All dimers are characterized through lower bond dissociation enthalpies (BDEs) than their monomers (model 4), which qualitatively supports the experimental results.
The general approach disclosed herein opens the new possibilities of exploiting the oxidation processes followed by chemiluminescence (CL) emission for the assessment of an antioxidant potential of natural lipid materials and enables determination of the amount and strength of lipid-borne antioxidants in one experiment. The reliability of the analytical procedure is completely unaffected by an inevitable entering of oxidizable lipid portions into the probe chemiluminescent mixture, which is exemplarily illustrated for the case of vegetable oils which served as sources of antioxidant-containing lipids. As a matter of fact, the difference in the effective radical-scavenging rate constants, determined for the antioxidative constituents of the sunflower and corn oils, perfectly matches the distinction of their qualitative tocopherol contents. In addition to the antiradical activity of lipid samples, the antioxidant potential of the latter may be modified by their influence on hydroperoxide stability, as it has been also demonstrated in the present work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.