Gait refers to a person's particular movements and stance while moving around. Although each person's gait is unique and made up of a variety of tiny limb orientations and body positions, they all have common characteristics that help to define normalcy. Swiftly identifying such characteristics that are difficult to spot by the naked eye, can help in monitoring the elderly who require constant care and support. Analyzing silhouettes is the easiest way to assess and make any necessary adjustments for a smooth gait. It also becomes an important aspect of decision-making while analyzing and monitoring the progress of a patient during medical diagnosis. Gait images made publicly available by the Chinese Academy of Sciences (CASIA) Gait Database was used in this study. After evaluating using the CASIA B and C datasets, this paper proposes a Convolutional Neural Network (CNN) and a CNN Long Short-Term Memory Network (CNN-LSTM) model for classifying the gait silhouette images. Transfer learning models such as MobileNetV2, InceptionV3, Visual Geometry Group (VGG) networks such as VGG16 and VGG19, Residual Networks (ResNet) like the ResNet9 and ResNet50, were used to compare the efficacy of the proposed models. CNN proved to be the best by achieving the highest accuracy of 94.29%. This was followed by ResNet9 and CNN-LSTM, which arrived at 93.30% and 87.25% accuracy, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.