Westwood+ TCP is a sender-side only modification of the classic Tahoe/Reno TCP that has been recently proposed to improve fairness and efficiency of TCP. The key idea of Westwood+ TCP is to perform an end-to-end estimate of the bandwidth available for a TCP connection by properly counting and filtering the stream of ACK packets. This estimate is used to adaptively decrease the congestion window and slow start threshold after a congestion episode. In this way Westwood+ TCP substitutes the classic multiplicative decrease paradigm with the adaptive decrease paradigm. In this paper we report experimental results that have been obtained running Linux 2.2.20 implementations of Westwood+, Westwood and Reno TCP to ftp data over an emulated WAN and over Internet connections spanning continental and intercontinental distances. In particular, collected measurements show that the bandwidth estimation algorithm employed by Westwood+ nicely tracks the available bandwidth, whereas the TCP Westwood bandwidth estimation algorithm greatly overestimates the available bandwidth because of ACK compression. Live Internet measurements also show that Westwood+ TCP improves the goodput w.r.t. TCP Reno. Finally, computer simulations using ns-2 have been developed to test Westwood, Westwood+ and Reno in controlled scenarios. These simulations show that Westwood+ improves fairness and goodput w.r.t. Reno.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.