An Italian MSE R&D programme on Nuclear Fission is funding, through ENEA, the design and testing of SPES3 facility at SIET, for IRIS reactor simulation. IRIS is a modular, medium size, advanced, integral PWR, developed by an international consortium of utilities, industries, research centres and universities. SPES3 simulates the primary, secondary and containment systems of IRIS, with 1:100 volume scale, full elevation and prototypical thermal-hydraulic conditions. The RELAP5 code was extensively used in support to the design of the facility to identify criticalities and weak points in the reactor simulation. FER, at Zagreb University, performed the IRIS reactor analyses with the RELAP5 and GOTHIC coupled codes. The comparison between IRIS and SPES3 simulation results led to a simulation-design feedback process with step-by-step modifications of the facility design, up to the final configuration. For this, a series of sensitivity cases was run to investigate specific aspects affecting the trend of the main parameters of the plant, as the containment pressure and EHRS removed power, to limit fuel clad temperature excursions during accidental transients. This paper summarizes the sensitivity analyses on the containment system that allowed to review the SPES3 facility design and confirm its capability to appropriately simulate the IRIS plant.
IRIS is an advanced integral pressurized water reactor, developed by an international consortium led by Westinghouse. The licensing process requires the execution of integral and separate effect tests on a properly scaled reactor simulator for reactor concept, safety system verification, and code assessment. Within the framework of an Italian R&D program on Nuclear Fission, managed by ENEA and supported by the Ministry of Economic Development, the SPES3 facility is under design and will be built and operated at SIET laboratories. SPES3 simulates the primary, secondary, and containment systems of IRIS with 1 : 100 volume scale, full elevation, and prototypical thermal-hydraulic conditions. The simulation of the facility with the RELAP5 code and the execution of the tests will provide a reliable tool for data extrapolation and safety analyses of the final IRIS design. This paper summarises the main design steps of the SPES3 integral test facility, underlying choices and phases that lead to the final design.
The measurement of two-phase flow parameters has never been an easy task in the experimental thermal-hydraulics and the need of such measurements in the SPES3 facility has led to investigation of different possibilities and evaluation methods to determine mass flows and energies. This paper deals with the theoretical prediction of the two-phase mass flow rate by the development of a mathematical model for a spool piece, consisting of a drag disk, a turbine and a void fraction detector. Data obtained by simulation of DBAs in the SPES3 facility, with the RELAP5 thermal-hydraulic code, have provided the reference conditions for defining the main thermal-hydraulic parameter ranges and selecting a set of instruments potentially suitable to measure and derive the required quantities. The governing equation and the instrumentation output are defined for each device. Three different turbine models (Aya, Rouhani and volumetric) have been studied to understand which one better adapts to two-phase flow conditions and to investigate the best instrument combination. The mathematical model has been tested versus the RELAP5 results with a reverse process where calculated variables, like void fraction, quality and slip ratio, are given as input to a specifically developed program to get back the mass flow rate. The analytical results, verified versus the DVI break transient, well agree with the RELAP5 mass flow rate. Specific tests on proper experimental loops are required to verify the analytical studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.