Currently no sustainable, economical and scalable systems have been developed for the direct removal of roadside air pollutants at their source. Here we present a simple and effective air filtering technology: botanical biofiltration, and the first field assessment of three different botanical biofilter designs for the filtration of traffic associated air pollutants -NO2, O3 and PM2.5from roadside ambient air in Sydney, Australia. Over two six month research campaigns, we show that all of the tested systems filtered NO2, O3 and PM2.5 with average single pass removal efficiencies of up to 71.5%, 28.1% and 22.1% respectively. Clean air delivery rates of up to 121 m 3 /h, 50 m 3 /h and 40 m 3 /h per m 2 of active green wall biofilter were achieved for the three pollutants respectively, with pollutant removal efficiency positively correlated with their ambient concentrations. We propose that large scale field trials of this technology are warranted to promote sustainable urban development and improved public health outcomes. Key words: green infrastructure; green wall; living wall; air quality; traffic pollution; urban greening Highlights Botanical biofiltration of NO2, O3 and PM2.5 was achieved at roadside environments. NO2 was removed most efficiently, with a single pass removal efficiency of 71.5%. 3 Pollutant clean air delivery rates of 40-121 m /h per 1 m 2 plenum were achieved. All pollutant removal rates were positively correlated with ambient concentrations.
Evolutionary theory predicts that organismal plasticity should evolve in environments that fluctuate regularly. However, in environments that fluctuate less predictably, plasticity may be constrained because environmental cues become less reliable for expressing the optimum phenotype. Here, we examine how the predictability of +5°C temperature fluctuations impacts the phenotype of the marine diatom
Thalassiosira pseudonana
. Thermal regimes were informed by temperatures experienced by microbes in an ocean simulation and featured regular or irregular temporal sequences of fluctuations that induced mild physiological stress. Physiological traits (growth, cell size, complexity and pigmentation) were quantified at the individual cell level using flow cytometry. Changes in cellular complexity emerged as the first impact of predictability after only 8–11 days, followed by deleterious impacts on growth on days 13–16. Specifically, cells with a history of irregular fluctuation exposure exhibited a 50% reduction in growth compared with the stable reference environment, while growth was 3–18 times higher when fluctuations were regular. We observed no evidence of heat hardening (increasingly positive growth) with recurrent fluctuations. This study demonstrates that unpredictable temperature fluctuations impact this cosmopolitan diatom under ecologically relevant time frames, suggesting shifts in environmental stochasticity under a changing climate could have widespread consequences among ocean primary producers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.