Powerful laser-plasma processes are explored to generate discharge currents of a few 100 kA in coil targets, yielding magnetostatic fields (B-fields) in excess of 0.5 kT. The quasi-static currents are provided from hot electron ejection from the laser-irradiated surface. According to our model, describing qualitatively the evolution of the discharge current, the major control parameter is the laser irradiance I las λ 2 las . The space-time evolution of the B-fields is experimentally characterized by high-frequency bandwidth B-dot probes and by proton-deflectometry measurements. The magnetic pulses, of ns-scale, are long enough to magnetize secondary targets through resistive diffusion. We applied it in experiments of laser-generated relativistic electron transport into solid dielectric targets, yielding an unprecedented 5-fold enhancement of the energy-density flux at 60 µm depth, compared to unmagnetized transport conditions. These studies pave the ground for magnetized high-energy density physics investigations, related to laser-generated secondary sources of radiation and/or high-energy particles and their transport, to high-gain fusion energy schemes and to laboratory astrophysics.
We discuss the modeling of population kinetics of nonequilibrium steady-state plasmas using a collisional-radiative model and code based on analytical rates (ABAKO). ABAKO can be applied to low-to-high Z ions for a wide range of laboratory plasma conditions: coronal, local thermodynamic equilibrium or nonlocal thermodynamic equilibrium, and optically thin or thick plasmas. ABAKO combines a set of analytical approximations to atomic rates, which yield substantial savings in computer running time, still comparing well with more elaborate codes and experimental data. A simple approximation to calculate the electron capture cross section in terms of the collisional excitation cross section has been adapted to work in a detailed-configuration-accounting approach, thus allowing autoionizing states to be explicitly included in the kinetics in a fast and efficient way. Radiation transport effects in the atomic kinetics due to line trapping in the plasma are taken into account via geometry-dependent escape factors. Since the kinetics problem often involves very large sparse matrices, an iterative method is used to perform the matrix inversion. In order to illustrate the capabilities of the model, we present a number of results which show that the ABAKO compares well with customized models and simulations of ion population distribution. The utility of ABAKO for plasma spectroscopic applications is also outlined.
We review the critical results of the 4th Non-LTE Code Comparison Workshop held in December 2005. To test the NLTE population kinetics codes, both steady-state and time-dependent cases for C, Ar, Fe, Sn, Xe, and Au plasmas were selected for detailed comparisons. Additional features such as the effects of non-Maxwellian free electrons, the influence of a Planckian radiation field, and the emission spectra were required in specific cases. The scope of problems was expanded from the previous workshops to include two problems outside the dense plasma physics, namely, the EUV lithography sources and the astrophysical photoionized plasmas. We briefly outline the technical organization of the workshop, present motivations for the chosen cases, and discuss some representative results. Ó 2007 Published by Elsevier B.V.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.