This article shows an autonomic management solution based on the recently defined programmable node architecture NetServ. The article starts with a general description of the classical network management requirements and their adaptation to the expected network evolution. After a description of the major issues characterizing the management of the expected Future Internet, the main autonomic management paradigms, and some recently introduced autonomic service platforms, we show and demonstrate the effectiveness of the NetServ architecture. Born as a means to deploy and execute networked services at runtime over programmable routers, NetServ has proved to be a suitable environment for hosting an autonomic management architecture.
Abstract-In this paper, we propose a new gossip-based signaling dissemination method for the Next Steps in Signaling protocol family. In more detail, we propose to extend the General Internet Signaling Transport (GIST) protocol, so as to leverage these new dissemination capabilities from all NSIS Signaling Layer Protocol applications using its transport capabilities. The new GIST extension consists of two main procedures: a bootstrap procedure, during which new GIST-enabled nodes discover each other, and a service dissemination procedure, which is used to effectively disseminate signaling messages within an Autonomous System. To this aim, we defined three dissemination models, bubble, balloon, and hose, so as to fulfill requirements of different network and/or service management scenarios. An experimental campaign carried out on the GENI testbed shows the effectiveness of the proposed solution.
Abstract-This paper shows an innovative solution for distributing dynamic sensor data by using distributed caches. Our proposal is based on the concepts of service modularization and virtualization of network nodes made available by the NetServ hosting environment, which has been defined and implemented with the aim of extending the functions of the network nodes. Through a lab experiment involving tens of nodes, we have demonstrated a significant performance improvements in term of traffic saving and download time in comparison with a legacy, Internet-based, approach. Beyond this performance improvements, the proposed solution holds also functional improvements, in terms of dynamic deployment and easy integration with services making use of sensor data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.