The myofibrillar protein synthetic response to the ingestion of 35 g casein is greater than after an equal amount of wheat protein. Ingesting a larger amount of wheat protein (i.e., 60 g) substantially increases myofibrillar protein synthesis rates in healthy older men. This trial was registered at clinicaltrials.gov as NCT01952639.
There is currently no evidence to suggest that protein or amino acid supplementation without concomitant nutritional or exercise interventions increases muscle mass or strength in predominantly healthy elderly people.
Habituation to LOW PRO (0.7 g · kg · d) compared with HIGH PRO (1.5 g · kg · d) augments the postprandial availability of dietary protein-derived amino acids in the circulation and does not lower basal muscle protein synthesis rates or increase postprandial muscle protein synthesis rates after ingestion of 25 g protein in older men. This trial was registered at clinicaltrials.gov as NCT01986842.
Protein ingestion before sleep augments postexercise muscle protein synthesis during overnight recovery. It is unknown whether postexercise and presleep protein consumption modulates postprandial protein handling and myofibrillar protein synthetic responses the following morning. Sixteen healthy young (24 ± 1 yr) men performed unilateral resistance-type exercise (contralateral leg acting as a resting control) at 2000. Participants ingested 20 g of protein immediately after exercise plus 60 g of protein presleep (PRO group; n = 8) or equivalent boluses of carbohydrate (CON; n = 8). The subsequent morning participants received primed, continuous infusions of l-[ring-H]phenylalanine and l-[1-C]leucine combined with ingestion of 20 g intrinsically l-[1-C]phenylalanine- and l-[1-C]leucine-labeled protein to assess postprandial protein handling and myofibrillar protein synthesis in the rested and exercised leg in CON and PRO. Exercise increased postabsorptive myofibrillar protein synthesis rates the subsequent day (P < 0.001), with no differences between CON and PRO. Protein ingested in the morning increased myofibrillar protein synthesis in both the exercised and rested leg (P < 0.01), with no differences between treatments. Myofibrillar protein bound l-[1-C]phenylalanine enrichments were greater in the exercised (0.016 ± 0.002 and 0.015 ± 0.002 MPE in CON and PRO, respectively) vs. rested (0.010 ± 0.002 and 0.009 ± 0.002 MPE in CON and PRO, respectively) leg (P < 0.05), with no differences between treatments (P > 0.05). The additive effects of resistance-type exercise and protein ingestion on myofibrillar protein synthesis persist for more than 12 h after exercise and are not modulated by protein consumption during acute postexercise recovery. This work provides evidence of an extended window of opportunity where presleep protein supplementation can be an effective nutrient timing strategy to optimize skeletal muscle reconditioning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.