Charge density waves are a common occurrence in all families of high critical temperature superconducting cuprates. Although consistently observed in the underdoped region of the phase diagram and at relatively low temperatures, it is still unclear to what extent they influence the unusual properties of these systems. Using resonant x-ray scattering we carefully determined the temperature dependence of charge density modulations in (Y,Nd)Ba2Cu3O7-δ for three doping levels. We discovered short-range dynamical charge density fluctuations besides the previously known quasi-critical charge density waves. They persist up to well above the pseudogap temperature T*, are characterized by energies of few meV and pervade a large area of the phase diagram, so that they can play a key role in shaping the peculiar normal-state properties of cuprates.Main text: High-Tc superconductors (HTS) are doped Mott insulators, where the quasi-twodimensionality of the layered structure and the large electron-electron repulsion (responsible, e.g., for the robust short-range antiferromagnetic correlations) make them deviating from the Landau Fermi liquid paradigm. The doping-temperature (p-T) phase diagram encompasses, at low T, the antiferromagnetic and the superconducting orders and, at higher T, the pseudogap region, which marks, below the cross-over temperature T*, a reduction of the quasiparticle density of states in some sections of the Fermi surface. In the pseudogap state and up to optimal doping p0.17, short/medium range incommensurate charge density waves (CDW) emerge as an order weakly competing with superconductivity.CDW were proposed theoretically since the early times of the high temperature superconductivity age (1,2,3); experimental evidence by surface and bulk sensitive techniques came initially in selected materials (4,5,6,7), and later in all cuprate families (8,9,10,11,12). Moreover long-range tridimensional CDW (3D-CDW) order has been observed inside the superconductive dome (for p0.08-0.17) in special circumstances, e.g. in high magnetic fields that weaken superconductivity or in epitaxially grown samples (13,14,15). Finally, it has come as a surprise the recent observation of CDW modulations in overdoped (Bi,Pb)2.12Sr1.88CuO6+δ outside the pseudogap regime too (16), hinting at a wider than expected occurrence of this phenomenon.
High temperature cuprate superconductors consist of stacked CuO2 planes, with primarily two dimensional electronic band structures and magnetic excitations [1,2], while superconducting coherence is three dimensional. This dichotomy highlights the importance of out-of-plane charge dynamics, believed to be incoherent in the normal state [3,4], yet lacking a comprehensive characterization in energy-momentum space. Here, we use resonant inelastic x-ray scattering (RIXS) with polarization analysis to uncover the pure charge character of a recently discovered collective mode in electron-doped cuprates [5-7]. This mode disperses along both the in-and, importantly, out-of-plane directions, revealing its three dimensional nature. The periodicity of the out-of-plane dispersion corresponds to the CuO2 plane distance rather than the crystallographic c-axis lattice constant, suggesting that the interplane Coulomb interaction drives the coherent out-of-plane charge dynamics. The observed properties are hallmarks of the long-sought acoustic plasmon, predicted for layered systems [8-13] and argued to play a substantial role in mediating high temperature superconductivity [13-15]. The charge dynamics of systems with periodically stacked quasi-two dimensional (2D) conducting planes are drastically affected in the presence of poorly screened interplane Coulomb interactions. In a simple layered electron gas model with conducting planes separated by dielectric spacers [8-10], the dispersion of plasmons, the collective electronic modes of the charge dynamics, evolves from optical-like to acoustic-like as a function of out-of-plane momentum qz [Fig. 1(a)], a behavior distinct from that in either pure 2D or isotropic 3D systems.For superconducting cuprates, similar charge dynamics have been postulated since they consist of conducting CuO2 planes stacked along the c-axis with poor out-of-plane screening [11][12][13]. While plasmons were observed in various spectroscopic studies at the Brillouin zone center [4,16,17] and by transmission electron energy loss spectroscopy (EELS) typically exploring in-plane
In the underdoped regime, the cuprate high-temperature superconductors exhibit a host of unusual collective phenomena, including unconventional spin and charge density modulations, Fermi surface reconstructions, and a pseudogap in various physical observables. Conversely, overdoped cuprates are generally regarded as conventional Fermi liquids possessing no collective electronic order. In partial contradiction to this widely held picture, we report resonant X-ray scattering measurements revealing incommensurate charge order reflections for overdoped (Bi,Pb)SrCuO (Bi2201), with correlation lengths of 40-60 lattice units, that persist up to temperatures of at least 250 K. The value of the charge order wavevector decreases with doping, in line with the extrapolation of the trend previously observed in underdoped Bi2201. In overdoped materials, however, charge order coexists with a single, unreconstructed Fermi surface without nesting or pseudogap features. The discovery of re-entrant charge order in Bi2201 thus calls for investigations in other cuprate families and for a reconsideration of theories that posit an essential relationship between these phenomena.
Although charge density waves (CDWs) are omnipresent in cuprate high-temperature superconductors, they occur at significantly different wavevectors, confounding efforts to understand their formation mechanism. Here, we use resonant inelastic x-ray scattering to investigate the dopingand temperature-dependent CDW evolution in La2−xBaxCuO4 (x = 0.115 − 0.155). We discovered that the CDW develops in two stages with decreasing temperature. A precursor CDW with quasi-commensurate wavevector emerges first at high-temperature. This doping-independent precursor CDW correlation originates from the CDW phase mode coupled with a phonon and "seeds" the low-temperature CDW with strongly doping dependent wavevector. Our observation reveals the precursor CDW and its phase mode as the building blocks of the highly intertwined electronic ground state in the cuprates. arXiv:1906.07149v3 [cond-mat.supr-con]
We provide a novel experimental method to quantitatively estimate the electron-phonon coupling and its momentum dependence from resonant inelastic x-ray scattering (RIXS) spectra based on the detuning of the incident photon energy away from an absorption resonance. We apply it to the cuprate parent compound NdBa2Cu3O6 and find that the electronic coupling to the oxygen halfbreathing phonon mode is strongest at the Brillouin zone boundary, where it amounts to ∼ 0.17 eV, in agreement with previous studies. In principle, this method is applicable to any absorption resonance suitable for RIXS measurements and will help to define the contribution of lattice vibrations to the peculiar properties of quantum materials. arXiv:1902.09163v1 [cond-mat.supr-con]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.