SUMMARY
In this paper we show that the processes that have shaped the Quaternary surface development of the Apennines in central Italy are all consequences of a single subcrustal process, the upwelling of the mantle. The relationship between gravity and topography shows that mantle convection is responsible for a long‐wavelength (150–200 km) topographic bulge over the central Apennines, and stratigraphic evidence suggests this bulge developed in the Quaternary. Active normal faulting is localized at the crest of this bulge and produces internally‐draining fault‐bounded basins. These basins have been progressively captured by the aggressive headward erosion of major streams that cut down to the sea on the flanks of the regional bulge. The only surviving closed basins are those on the Apennine watershed most distant from the marine base level, where continued normal faulting is still able to provide local subsidence that defeats their capture by the regional drainage network. Understanding the competition between regional capture and local, fault‐related subsidence of intermontane basins is crucial for recognizing potentially hazardous active faults in the landscape and also for interpreting the sediment supply to adjacent offshore regions. Central Italy provides a good modern analogue for processes that are probably common in the geological record, particularly on rifted margins and intracontinental rifts, but may not have been fully appreciated.
The E-W-opening Tyrrhenian Sea developed after the Cretaceous-Palaeogene Alpine collision, nearly perpendicular to the motion of the African plate, as a back-arc of the Adria-Ionian westward subduction. Three driving mechanisms have been proposed to explain the dynamic evolution of the Tyrrhenian-Apennine system: ( 1 ) the northward indentation of the African plate; (2) the retreating subduction of the Adria-Ionian lithosphere; and (3) the gravitational collapse of the Alpine post-collisional wedge. In order to define the relative contribution of each of these mechanisms in the Neogene dynamic of the Tyrrhenian-Apennine system, we performed 3-D laboratory experiments, in which we simulated a retreating subduction process in a compressional regime oriented perpendicularly to the direction of subduction; in this framework we also tested the influence of the gravitational collapse of the overriding plate. Experiments were constructed using dry sand and silicone putties to simulate brittle upper crust and ductile lower crust/upper mantle, respectively; these layers floated on a highdensity, low-viscosity glucose syrup which simulated the asthenosphere. The main conclusion of our experiments is that large-scale continental extension, similar to that observed in the Tyrrhenian area, could be reproduced perpendicular to the shortening direction induced by the indentation of the African plate; in this framework, extensional processes are indeed possible if the trench retreat velocity is higher than the rate of shortening induced by the advancing African plate. Our experimental results indicate that this high trench retreat velocity could be explained by the coexistence of the gravitational collapse of the post-Alpine wedge with a slab-pull process, linked to the retreating subduction of the Adria-Ionian plate. While the first mechanism is predominant in the Northern Tyrrhenian area, the second one seems to be important in the latest stage of extension and oceanic accretion of the Southern Tyrrhenian area.
In the Central Mediterranean two back‐arc basins, the Liguro‐Provençal (LPb) and the Tyrrhenian basin (Tb), opened progressively and consecutively from the late Eocene–Oligocene to the present. Evolution in space and time of rifting and drifting processes, along three different transects across these basins, shows differences in the style of extension: LPb opened with the formation of a narrow, single rift, while in the Tb deformation and magmatism is spread over a wide area. Moreover at the Northern end of the Tb the locus of extension progressively migrated towards the east whereas in the Southern Tb the locus of extension and magmatism migrated inside the basin, inducing continental break‐up and drifting of the previously formed older conjugate basins. We propose that these different styles of back‐arc extension depend upon internal conditions, such as prerift rheology linked with its geological heritage, and external conditions, e.g. the style of subduction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.