The roasting (baking) of meat involves both heat and mass transfer. A mathematical model which describes the roasting process as it occurs in a conventional oven is presented. Numerical solutions are presented for several different roasting conditions and the results are compared to available experimental results. A significant fraction of the energy required for roasting is associated with the evaporation of water and this needs to be considered in modeling the roasting process. Water losses due to mass transfer from the product depend on oven humidity and temperature. The mathematical model considers the variation of oven humidity with time during roasting. The implicit alternating direction finite difference method is used to obtain the numerical solutions.
The SIMPLER numerical method was used to calculate the pseudo-steady-state natural convection heat transfer to a fluid inside a closed vertical cylinder for which the boundary temperature was spatially uniform and the temperatures throughout the entire system were increasing at the same rate. (Pseudo-steady state is comparable to the steady-state problem for a fluid with uniform heat generation and constant wall temperature.) Stream functions, temperature contours, axial velocities, and temperature profiles are presented. The range of calculation was 0.25 < H/D < 2, Ra < 107, and Pr = 7. This range includes conduction to weak turbulence. A characteristic length defined as 6 × (volume)/(surface area) was used since it seemed to produce good regression results. The overall heat transfer for the convection-dominated range was found to be correlated by Nu = 0.519 Ra0.255, where the temperature difference for both the Nusselt and Rayleigh numbers was the center temperature minus the wall temperature. Correlations using other temperature differences are also presented for estimating the volumetric mean and minimum temperatures.
Natural convection heat transfer to water contained within five different sized spheres was studied. Pseudosteady-state was maintained by keeping the driving force for convection constant, i.e., the temperature outside the sphere was increased steadily so that the temperature difference between the outside and the center remained constant. Flow visualization was used to determine flow patterns within the spheres. Laminar flow was found to exist below Rayleigh numbers of about 107. The flow patterns along with the position of the circulation centers are presented and compared with recent numerical solutions. The overall heat transfer in the laminar region was fitted by least squares and the following correlation obtained: Nu=0.80Ra0.30
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.