The most extensive data set yet generated correlating photoluminescence excitation (PLE) and photoluminescence (PL) spectra is presented for aged (equilibrated) porous silicon (PS) samples. The observed features, which are temperature independent over the range 10-300 K, show a detailed correlation with the results of photoacoustic spectroscopy (PAS) and with molecular electronic structure calculations. The observed energy level patterns are reproduced in the photoabsorption (PA) of PS films released after the etching of a silicon wafer. It is concluded that the energy level pattern found for the photoluminescing surface of PS results from a structure which is neither uniquely molecule- or bulk-like but represents a hybrid form for which the density of states associated with a polyatomic vibrationally excited surface-bound fluorophor dominates the nature of the observed features which are not those of a semiconductor. These fluorophor features are broadened and shifted to lower excitation energy as a result of the intimate presence of the silicon surface to which the fluorophor is bound. The dominance of the surface-bound fluorophor accounts for the temperature-independent PLE and PL features. The observed spectral features are thus suggested to be the result of a strong synergistic interaction in which the silicon surface influences the location of surface-bound fluorophor excited states whereas the nature of the vibrationally excited surface-bound fluorophor coupling to the silicon surface provides the mechanism for an enhanced vibronic structure dominated interaction and energy transfer. The observed PLE, PL, PAS, and PA measurements are found to be consistent with previous photovoltaic and photoconductivity measurements, correlating well with a surface-bound oxyhydride-like emitter. This study suggests the important role that the overtone structure of a molecule bound to a surface can play as one forms a hybrid system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.