Please be advised that this information was generated on 2018-05-11 and may be subject to change.
letters to natureSequences (MIPS) databases were reconciled. Ty elements and dubious open reading frames (ORFs) were excluded. The data set (5,790 proteins) and search results can be viewed at the URL http://acer.gen.tcd.ie/~khwolfe/yeast. Repetitive regions within proteins were masked using the SEG filter in BLAST.Statistical analysis. Chi-square tests (data not shown) indicate that duplicated genes in yeast are distributed in a highly non-random manner with regard to both the order in which homologous genes occur on pairs of chromosomes and the transcriptional orientations of those genes. A simultaneous origin of duplicate regions, as opposed to 55 independent duplications, is supported by a chi-square test on block orientations and by the lack of triplicated regions. The Poisson expectation if blocks were duplicated sequentially is for approximately 40 duplicated blocks, and 7 blocks that are replicated more than once (mainly triplicated). There is only one possible candidate for a triplicated region: the genes YDR474Q YDR492W
The epidemic form of the hemolytic uremic syndrome (HUS) has been associated with a verocytotoxin producing Escherichia coli infection. Endothelial cell damage of glomeruli and arterioles of the kidney plays a central role in the pathogenesis of HUS. A number of observations in vivo and in vitro indicate that inflammatory mediators contribute to this process. In this study we investigated the binding of 125I- verocytotoxin-1 (VT-1) to freshly isolated human nonadherent monocytes as well as the nature of the ligand to which VT-1 binds on monocytes. On the average, freshly isolated monocytes have 0.07 x 10(5) specific binding sites for 125I-VT-1 per cell. Preincubation of nonadherent monocytes with bacterial lipopolysaccharide (LPS) caused a 23- to 30- fold increase of specific binding sites for VT-1 as shown by Scatchard plot analysis. Thin-layer chromatography of extracted neutral glycolipids of the cells and subsequent binding of 125I-VT-1 showed that human monocytes bind VT-1 to a globotriaosylceramide (Gb3) species that is different from that found on endothelial cells, probably a short-chain fatty acyl Gb3 or an alpha-OH-Gb3. In addition, we evaluated the functional consequences of VT-1 binding to human monocytes by investigating the effects of VT-1 on the total protein synthesis and, specifically, the production of the cytokines interleukin-1 beta (IL-1 beta), tumor necrosis factor-alpha (TNF- alpha), IL-6, and IL-8. We observed that VT-1 did not inhibit overall protein synthesis, nor under basal conditions, neither after stimulation with LPS, in contrast to previous observations with endothelial cells. Furthermore, we found that VT-1 induces the synthesis of the cytokines IL-1 beta, TNF-alpha, IL-6, and IL-8 in nonstimulated monocytes by a LPS-independent cell activation. The increase in the production of cytokines was parallelled by an increase in mRNA, as was demonstrated for IL-6 by reverse transcription- polymerase chain reaction. These data suggest that inflammatory mediators locally produced by VT-1-stimulated monocytes may contribute to the pathogenic mechanism of the HUS.
The epidemic form of the hemolytic uremic syndrome (HUS) has been associated with a verocytotoxin producing Escherichia coli infection. Endothelial cell damage of glomeruli and arterioles of the kidney plays a central role in the pathogenesis of HUS. A number of observations in vivo and in vitro indicate that inflammatory mediators contribute to this process. In this study we investigated the binding of 125I- verocytotoxin-1 (VT-1) to freshly isolated human nonadherent monocytes as well as the nature of the ligand to which VT-1 binds on monocytes. On the average, freshly isolated monocytes have 0.07 x 10(5) specific binding sites for 125I-VT-1 per cell. Preincubation of nonadherent monocytes with bacterial lipopolysaccharide (LPS) caused a 23- to 30- fold increase of specific binding sites for VT-1 as shown by Scatchard plot analysis. Thin-layer chromatography of extracted neutral glycolipids of the cells and subsequent binding of 125I-VT-1 showed that human monocytes bind VT-1 to a globotriaosylceramide (Gb3) species that is different from that found on endothelial cells, probably a short-chain fatty acyl Gb3 or an alpha-OH-Gb3. In addition, we evaluated the functional consequences of VT-1 binding to human monocytes by investigating the effects of VT-1 on the total protein synthesis and, specifically, the production of the cytokines interleukin-1 beta (IL-1 beta), tumor necrosis factor-alpha (TNF- alpha), IL-6, and IL-8. We observed that VT-1 did not inhibit overall protein synthesis, nor under basal conditions, neither after stimulation with LPS, in contrast to previous observations with endothelial cells. Furthermore, we found that VT-1 induces the synthesis of the cytokines IL-1 beta, TNF-alpha, IL-6, and IL-8 in nonstimulated monocytes by a LPS-independent cell activation. The increase in the production of cytokines was parallelled by an increase in mRNA, as was demonstrated for IL-6 by reverse transcription- polymerase chain reaction. These data suggest that inflammatory mediators locally produced by VT-1-stimulated monocytes may contribute to the pathogenic mechanism of the HUS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.