Process Mining as a discipline is based on Business Process Management where techniques and tools are used for knowledge generation. One important aspect of process mining is compliance checking which is founded over concepts of Audit 2.0. Where the "As-is" state of a business is compared with the "To-be" state of the business. In Compliance Checking behaviour of process models is compared to the event logs of said process. How to perform this comparison is a big concern of the business process management community. There exist many techniques but which technique is suitable when and where is the question addressed in this paper. Furthermore, this paper aims to discuss the gradual introduction of techniques in Compliance Checking as well as identifying the research gaps in the area.
Abstract. In the past decade, a lot of effort is put into applying digital innovations to building life cycles. 3D Models have been proven to be efficient for decision making, scenario simulation and 3D data analysis during this life cycle. Creating such digital representation of a building can be a labour-intensive task, depending on the desired scale and level of detail (LOD). This research aims at creating a new automatic deep learning based method for building model reconstruction. It combines exterior and interior data sources: 1) 3D BAG, 2) archived floor plan images. To reconstruct 3D building models from the two data sources, an innovative combination of methods is proposed. In order to obtain the information needed from the floor plan images (walls, openings and labels), deep learning techniques have been used. In addition, post-processing techniques are introduced to transform the data in the required format. In order to fuse the extracted 2D data and the 3D exterior, a data fusion process is introduced. From the literature review, no prior research on automatic integration of CityGML/JSON and floor plan images has been found. Therefore, this method is a first approach to this data integration.
Abstract. 3D tree objects can be used in various applications, like estimation of physiological equivalent temperature (PET). During this project, a method is designed to extract 3D tree objects from a country-wide point cloud. To apply this method on large scale, the algorithm needs to be efficient. Extraction of trees is done in two steps: point-wise classification using the PointNet deep learning network, and Watershed segmentation to split points into individual trees. After that, 3D tree models are made. The method is evaluated on 3 areas, a park, city center and housing block in the city of Deventer, the Netherlands. This resulted into an average accuracy of 92% and a F1-score of 0.96.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.