To examine the effects of rapid dehydration on isometric muscular strength and endurance, seven men were tested at baseline (control) and after a dehydration (dHST) and a euhydration (eHST) heat stress trial. The dHST consisted of intermittent sauna exposure until 4% of body mass was lost, whereas the eHST consisted of intermittent sauna exposure (same duration as dHST) with water replacement. Peak torque was determined for the knee extensors and elbow flexors during three isometric maximal voluntary contractions. Time to fatigue was determined by holding a maximal voluntary contraction until torque dropped below 50% peak torque for 5 s. Strength and endurance were assessed 3.5 h after the HSTs (no food or water intake). Body mass was decreased 3.8+/-0.4% post dHST and 0.4+/-0.3% post eHST. Plasma volume was decreased 7.5+/-4.6% and 5.7+/-4.4%, 60 and 120 min post dHST, respectively. A small (1.6 mEq x L[-1]) but significant increase was found for serum Na+ concentration 60 min post dHST but had returned to predehydration level 120 min post dHST. Serum K+ and myoglobin concentrations were not affected by HSTs. Peak torque was not different (P > 0.05) among control, dHST, and eHST for the knee extensors (Mean (Nm)+/-SD, 285+/-79, 311+/-113, and 297+/-79) and elbow flexors (79+/-12, 83+/-15, and 80+/-12). Time to fatigue was not different (P > 0.05) among control, dHST and eHST for the knee extensors (Mean (s)+/-SD. 42.4+/-11.5, 45.3+/-7.6, and 41.8+/-6.0) and elbow flexors (48.2+/-8.9, 44.0+/-9.4, and 46.0+/-6.4). These results provide evidence that isometric strength and endurance are unaffected 3.5 h after dehydration of approximately 4% body mass.
Gender differences in plasma FFA responses to 90 min of treadmill walking at 35% VO2max were investigated in six men and six women following an overnight fast. The subjects represented average values for maximal oxygen uptake and body fat percentage for age and gender. Mean plasma FFA concentration at 45 and 90 min of exercise were significantly (P less than 0.05) higher for women (0.82 mmol X 1(-1), 0.88 mmol X 1(-1)) than men (0.42 mmol X 1(-1), 0.59 mmol X 1(-1)). Lower R values for women throughout the exercise period indicated a greater percentage fat in total metabolism than for men while the FFA/glycerol results supported greater lipolytic activity for women. The uniformity of percent fat in metabolism for women from rest to exercise showed that FFA release from adipose tissue increased rapidly with the onset of exercise which was not the case for men. Comparison of metabolic data as well as a statistical analysis (ANCOVA) controlling for the influence of VO2max and percentage body fat on FFA plasma concentration suggested that gender differences in FFA responses to prolonged submaximal exercise can be expected to occur in untrained subjects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.