AgPb2B2V3O12 (B = Mg, Zn) ceramics with low sintering temperature were synthesized via the conventional solid‐state reaction route. Rietveld refinements of the X‐ray diffraction patterns confirm cubic symmetry with space group Ia3¯d. The number of observed vibrational modes and those predicted by group theoretical calculations also confirm the Ia3¯d space group. At the optimum sintering temperature of 750°C/4 hours, AgPb2Mg2V3O12 has a relative permittivity of 23.3 ± 0.2, unloaded quality factor (Qnormalu×f) of 26 900 ± 500 GHz (f=7.57GHz), and temperature coefficient of resonant frequency of 19.3 ± 1 ppm/°C, while AgPb2Zn2V3O12 has the corresponding values of 26.4 ± 0.2, 28 400 ± 500 GHz (f=7.21GHz) and –18.4 ± 1 ppm/°C at 590°C/4 hours. Microwave dielectric properties of a few reported garnets and Pb2AgB2V3O12 (B = Mg, Zn) ceramics were correlated with their intrinsic characteristics such as the Raman shifts as well as width of A1g Raman bands. Higher quality factor was obtained for lower full width at half‐maxima (FWHMs) values of A1g modes. The increase in B‐site bond valence contributes to high Qnormalu×f and low |τf| with the substitution of Zn2+ by Mg2+. Furthermore, the high ionic polarizability and unit cell volume with Zn2+substitution contribute to increased relative permittivity.
Cold sintering process (CSP) was successfully employed to fabricate (1 − x) NaCa2Mg2V3O12-xNaCl [abbreviated as (1 − x) NCMVO-xNaCl] microwave dielectric ceramics. (1 − x)NCMVO-xNaCl ceramics prepared at 200°C and at a pressure of 450 MPa had a high relative density of 80–94%. X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDS), and Raman spectroscopy showed that both NCMVO and NaCl phases co-exist in all composite ceramics without forming any secondary phase. Further, dependence of microstructure and dielectric properties on cold sintering temperature and duration were investigated in detail and their optimized values to obtain maximum density of ceramic composites were 200°C and 50 min, respectively. (1 − x)NCMVO-xNaCl (x = 0.4–0.7) composites have relative permittivity (εr) in the range of 6.9–7.4, and a reasonably high microwave quality factor (Q × f) of 5,000 to 13,830 GHz.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.