The characterization of selected Bacillus thuringiensis strains isolated from different Latin America countries is presented. Characterization was based on their insecticidal activity against Aedes aegypti, Culex quinquefasciatus, and Anopheles albimanus larvae, scanning electron microscopy, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and plasmid profiles as well as PCR analysis using novel general and specific primers for cry and cyt genes encoding proteins active against mosquitoes (cyt1, cyt2, cry2, cry4A, cry4B, cry10, cry11, cry17, cry19, cry24, cry25, cry27, cry29, cry30, cry32, cry39, and cry40). Strains LBIT315, LBIT348, and IB604 showed threefold higher mosquitocidal activity against A. aegypti and C. quinquefasciatus larvae than B. thuringiensis subsp. israelensis and displayed high similarities with the B. thuringiensis subsp. israelensis used in this study with regard to protein and plasmid profiles and the presence of cry genes. Strain 147-8906 has activity against A. aegypti similar to that of B. thuringiensis subsp. israelensis but has different protein and plasmid profiles. This strain, harboring cry11, cry30, cyt1, and cyt2 genes, could be relevant for future resistance management interventions. Finally, the PCR screening strategy presented here led us to identify a putative novel cry11B gene.