Abstract:In many Hawaiian forests, including cloud forests, native plant communities are being displaced by invasive tree species, possibly affecting rainfall partitioning and direct harvesting of cloud droplets by vegetation. In this study, the hydrological impacts of invasive species are examined, using measurements of rainfall (RF), throughfall (TF) and stemflow (SF), and estimation of wet-canopy evaporation and cloud water interception (CWI) by the canopy water balance approach in both native Metrosideros polymorpha-dominated and invaded, Psidium cattleianum-dominated forests within Hawai'i Volcanoes National Park (HAVO). Canopy water storage capacity was found to be more than twice as great at the native site (1Ð86 mm) compared to the invaded site (0Ð85 mm). Annual RF, CWI, TF and SF were 3233, 1188, 3700 and 261 mm, respectively, for the native site; and 3735, 734, 3033 and 1091 mm, respectively, for the invaded site. Net RF (TF C SF) was 123 and 110% of RF, respectively, at the two sites. Annual evaporation of water from the wet canopy was also greater at the native site (464 mm) than at the invaded site (347 mm). Low canopy water storage capacity and the exceptionally high SF total at the invaded site are related to morphological characteristics and high stem density of the invasive P. cattleianum tree, which favour efficient transport of intercepted water to the ground via the stems. Despite its more peripheral location near the edge of the orographic cloud, CWI at the native site was higher. The characteristics of the native M. polymorpha tree may facilitate more effective harvesting of cloud water droplets, enhancing CWI at the site. Species invasion results in a lower proportion of RF reaching the forest floor (110 vs 123%) and becoming available for groundwater recharge, suggesting that invasion by P. cattleianum may have significant negative effects on Hawai'i's aquatic ecosystems and water resources.
Although we know that rainfall interception (the rain caught, stored, and evaporated from aboveground vegetative surfaces and ground litter) is affected by rain and throughfall drop size, what was unknown until now is the relative proportion of each throughfall type (free throughfall, splash throughfall, canopy drip) beneath coniferous and broadleaved trees. Based on a multinational data set of >120 million throughfall drops, we found that the type, number, and volume of throughfall drops are different between coniferous and broadleaved tree species, leaf states, and timing within rain events. Compared with leafed broadleaved trees, conifers had a lower percentage of canopy drip (51% vs. 69% with respect to total throughfall volume) and slightly smaller diameter splash throughfall and canopy drip. Canopy drip from leafless broadleaved trees consisted of fewer and smaller diameter drops (D50_DR, 50th cumulative drop volume percentile for canopy drip, of 2.24 mm) than leafed broadleaved trees (D50_DR of 4.32 mm). Canopy drip was much larger in diameter under woody drip points (D50_DR of 5.92 mm) than leafed broadleaved trees. Based on throughfall volume, the percentage of canopy drip was significantly different between conifers, leafed broadleaved trees, leafless broadleaved trees, and woody surface drip points (p ranged from <0.001 to 0.005). These findings are partly attributable to differences in canopy structure and plant surface characteristics between plant functional types and canopy state (leaf, leafless), among other factors. Hence, our results demonstrating the importance of drop‐size‐dependent partitioning between coniferous and broadleaved tree species could be useful to those requiring more detailed information on throughfall fluxes to the forest floor.
To investigate the effects of expanding rubber (Hevea brasiliensis) cultivation on water cycling in Mainland Southeast Asia (MSEA), evapotranspiration (ET) was measured within rubber plantations at Bueng Kan, Thailand, and Kampong Cham, Cambodia. After energy closure adjustment, mean annual rubber ET was 1211 and 1459 mm yr 21 at the Thailand and Cambodia sites, respectively, higher than that of other tree-dominated land covers in the region, including tropical seasonal forest (812-1140 mm yr 21 ), and savanna (538-1060 mm yr 21 ). The mean proportion of net radiation used for ET by rubber (0.725) is similar to that of tropical rainforest (0.729) and much higher than that of tropical seasonal forest (0.595) and savanna (0.548). Plant area index (varies with leaf area changes), explains 88.2% and 73.1% of the variance in the ratio of latent energy flux (energy equivalent of ET) to potential latent energy flux (LE/LE pot ) for midday rain-free periods at the Thailand and Cambodia sites, respectively. High annual rubber ET results from high late dry season water use, associated with rapid refoliation by this brevideciduous species, facilitated by tapping of deep soil water, and by very high wet season ET, a characteristic of deciduous trees. Spatially, mean annual rubber ET increases strongly with increasing net radiation (R n ) across the three available rubber plantation observation sites, unlike nonrubber tropical ecosystems, which reduce canopy conductance at high R n sites. High water use by rubber raises concerns about potential effects of continued expansion of tree plantations on water and food security in MSEA.
The rapid and widespread expansion of rubber plantations in Southeast Asia necessitates a greater understanding of tree physiology and the impacts of water consumption on local hydrology. Sap flow measurements were used to study the intra- and inter-annual variations in transpiration rate (Et) in a rubber stand in the low-elevation plain of central Cambodia. Mean stand sap flux density (JS) indicates that rubber trees actively transpire in the rainy season, but become inactive in the dry season. A sharp, brief drop in JS occurred simultaneously with leaf shedding in the middle of the dry season in January. Although the annual maxima of JS were approximately the same in the two study years, the maximum daily stand Et of ∼2.0 mm day(-1) in 2010 increased to ∼2.4 mm day(-1) in 2011. Canopy-level stomatal response was well explained by changes in solar radiation, vapor pressure deficit, soil moisture availability, leaf area, and stem diameter. Rubber trees had a relatively small potential to transpire at the beginning of the study period, compared with average diffuse-porous species. After 2 years of growth in stem diameter, transpiration potential was comparable to other species. The sensitivity of canopy conductance (gc) to atmospheric drought indicates isohydric behavior of rubber trees. Modeling also predicted a relatively small sensitivity of gc to the soil moisture deficit and a rapid decrease in gc under extreme drought conditions. However, annual observations suggest the possibility of a change in leaf characteristics with tree maturity and/or initiation of latex tapping. The estimated annual stand Et was 469 mm year(-1) in 2010, increasing to 658 mm year(-1) in 2011. Diagnostic analysis using the derived gc model showed that inter-annual change in stand Et in the rapidly growing young rubber stand was determined mainly by tree growth rate, not by differences in air and soil variables in the surrounding environment. Future research should focus on the potentially broad applicability of the relationship between Et and tree size as well as environmental factors at stands different in terms of clonal type and age.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.