Abstract-Ground-penetrating radar (GPR) is a remote sensing technique used to obtain information on subsurface features from data collected over the surface. The process of collecting data may be viewed as mapping from the object space to an image space. Since most GPRs use broad beamwidth antennas, the energy reflected from a buried structure is recorded over a large lateral aperture in the image space. Migration algorithms are used to reconstruct an accurate scattering map by refocusing the recorded scattering events to their true spatial locations through a backpropagation process. The goal of this paper is to present a pair of finite-difference time-domain (FDTD) reverse-time migration algorithms for GPR data processing. Linear inverse scattering theory is used to develop a matched-filter response for the GPR problem. The reverse-time migration algorithms, developed for both bistatic and monostatic antenna configurations, are implemented via FDTD in the object space. Several examples are presented.Index Terms-Finite-difference time domain (FDTD), ground penetrating radar (GPR), matched filter, reverse time migration, synthetic aperture radar (SAR).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.