Voyager 2 photography has complemented that of Voyager I in revealing many additional characteristics of Saturn and its satellites and rings. Saturn's atmosphere contains persistent oval cloud features reminiscent of features on Jupiter. Smaller irregular features track out a pattern of zonal winds that is symmetric about Saturn's equator and appears to extend to great depth. Winds are predominantly eastward and reach 500 meters per second at the equator. Titan has several haze layers with significantly varying optical properties and a northern polar "collar" that is dark at short wavelengths. Several satellites have been photographed at substantially improved resolution. Enceladus' surface ranges from old, densely cratered terrain to relatively young, uncratered plains crossed by grooves and faults. Tethys has a crater 400 kilometers in diameter whose floor has domed to match Tethys' surface curvature and a deep trench that extends at least 270 degrees around Tethys' circumference. Hyperion is cratered and irregular in shape. Iapetus' bright, trailing hemisphere includes several dark-floored craters, and Phoebe has a very low albedo and rotates in the direction opposite to that of its orbital revolution with a period of 9 hours. Within Saturn's rings, the "birth" of a spoke has been observed, and surprising azimuthal and time variability is found in the ringlet structure of the outer B ring. These observations lead to speculations about Saturn's internal structure and about the collisional and thermal history of the rings and satellites.
New insights into the history of the inner solar system are derived from the impact cratering record of the Moon, Mars, Venus and Mercury, and from the size distributions of asteroid populations. Old craters from a unique period of heavy bombardment that ended ∼3.8 billion years ago were made by asteroids that were dynamically ejected from the main asteroid belt, possibly due to the orbital migration of the giant planets. The impactors of the past ∼3.8 billion years have a size distribution quite different from the main belt asteroids, but very similar to the population of near-Earth asteroids.The Moon and all the terrestrial planets were resurfaced during a period of intense impact cratering that occurred between the time of their accretion, ∼ 4.5 Ga, and ∼ 3.85 Ga. The lunar cratering record and the radiometrically dated Apollo samples have shown that the intense bombardment of the Moon ended at ∼ 3.85 Ga; the impact flux since that time to the present has been at least an order of magnitude smaller. The 3.85 Ga epoch might represent the final end of an era of steadily declining large impacts (the tail end of the accretion of the planets). However, it has also been argued that only a sudden injection of impacting objects into the terrestrial planet zone accounts for the abrupt end of the intense bombardment; thus, this event has been named the Late Heavy Bombardment (LHB), or sometimes the Lunar Cataclysm, to distinguish it from the prior final accretion of the planets at 4.5 Ga. Specifically, the lunar cataclysm hypothesis (1,2) postulates that the intense bombardment of the Moon lasted only a very short period of time, 20-200 My (2-5). Recent results on the impact ages of lunar meteorites (which represent a much broader region of the lunar surface than the Apollo samples) support this hypothesis (6-8). Furthermore, the impact-reset ages of meteoritic samples of asteroids (9-10) and the shock-metamorphosing at 3.92 Ga of the only known sample of the heavily cratered highlands of Mars, meteorite Allan Hills 84001 (11), indicate that the LHB affected the entire inner Solar System, not just the Moon.Identifying the sources of planetary impactors has proven elusive. Dynamical models invoking both geocentric and heliocentric debris and both asteroidal and cometary reservoirs have been
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.