Platelet-derived growth factors (PDGFs) and their receptors (PDGFRs) have served as prototypes for growth factor and receptor tyrosine kinase function for more than 25 years. Studies of PDGFs and PDGFRs in animal development have revealed roles for PDGFR-␣ signaling in gastrulation and in the development of the cranial and cardiac neural crest, gonads, lung, intestine, skin, CNS, and skeleton. Similarly, roles for PDGFR- signaling have been established in blood vessel formation and early hematopoiesis. PDGF signaling is implicated in a range of diseases. Autocrine activation of PDGF signaling pathways is involved in certain gliomas, sarcomas, and leukemias. Paracrine PDGF signaling is commonly observed in epithelial cancers, where it triggers stromal recruitment and may be involved in epithelial-mesenchymal transition, thereby affecting tumor growth, angiogenesis, invasion, and metastasis. PDGFs drive pathological mesenchymal responses in vascular disorders such as atherosclerosis, restenosis, pulmonary hypertension, and retinal diseases, as well as in fibrotic diseases, including pulmonary fibrosis, liver cirrhosis, scleroderma, glomerulosclerosis, and cardiac fibrosis. We review basic aspects of the PDGF ligands and receptors, their developmental and pathological functions, principles of their pharmacological inhibition, and results using PDGF pathway-inhibitory or stimulatory drugs in preclinical and clinical contexts.Platelet-derived growth factor (PDGF) was identified more than three decades ago as a serum growth factor for fibroblasts, smooth muscle cells (SMCs), and glia cells (Kohler and Lipton 1974;Ross et al. 1974;Westermark and Wasteson 1976). Human PDGF was originally identified as a disulfide-linked dimer of two different polypeptide chains, A and B, separable using reversed phase chromatography (Johnsson et al. 1982). The B-chain (PDGF-B) was characterized by amino acid sequencing, revealing a close homology between PDGF-B and the product of the retroviral oncogene v-sis of simian sarcoma virus (SSV) (Doolittle et al. 1983;Waterfield et al. 1983). Subsequent studies confirmed that the human cellular counterpart (c-sis) was identical to PDGF-B and that autocrine PDGF activity was sufficient for SSV transformation in vitro. This was a paradigm-shifting discovery about the relationship between neoplastic cell transformation and normal growth control. For the first time, the importance of autocrine growth stimulation in neoplastic transformation was demonstrated. As discussed below, it is now well established that autocrine PDGF stimulation plays a role also in some human cancers.PDGF-A was characterized by cDNA cloning ). This resolved a paradoxical lack of correlation between secretion of PDGF-like growth factors from tumor cell lines and their expression of c-sis; it turned out that most such cell lines express PDGF-A and secrete PDGF-AA homodimers ). Together with the demonstration that PDGF-BB homodimers are produced by SSV-transformed or PDGF-Bexpressing cells, these results showed that the PDGF...
During heart development endocardial cells within the atrio-ventricular (AV) region undergo TGFβ-dependent epithelial-mesenchymal transformation (EMT) and invade the underlying cardiac jelly. This process gives rise to the endocardial cushions from which AV valves and part of the septum originate. In this paper we show that in mouse embryos and in AV explants TGFβ induction of endocardial EMT is strongly inhibited in mice deficient for endothelial β-catenin, leading to a lack of heart cushion formation. Using a Wnt-signaling reporter mouse strain, we demonstrated in vivo and ex vivo that EMT in heart cushion is accompanied by activation of β-catenin/TCF/Lef transcriptional activity. In cultured endothelial cells, TGFβ2 induces α-smooth muscle actin (αSMA) expression. This process was strongly reduced in β-catenin null cells, although TGFβ2 induced smad phosphorylation was unchanged. These data demonstrate an involvement of β-catenin/TCF/Lef transcriptional activity in heart cushion formation, and suggest an interaction between TGFβ and Wnt-signaling pathways in the induction of endothelial-mesenchymal transformation.
Using the Cre/loxP system we conditionally inactivated β-catenin in endothelial cells. We found that early phases of vasculogenesis and angiogenesis were not affected in mutant embryos; however, vascular patterning in the head, vitelline, umbilical vessels, and the placenta was altered. In addition, in many regions, the vascular lumen was irregular with the formation of lacunae at bifurcations, vessels were frequently hemorrhagic, and fluid extravasation in the pericardial cavity was observed. Cultured β-catenin −/− endothelial cells showed a different organization of intercellular junctions with a decrease in α-catenin in favor of desmoplakin and marked changes in actin cytoskeleton. These changes paralleled a decrease in cell–cell adhesion strength and an increase in paracellular permeability. We conclude that in vivo, the absence of β-catenin significantly reduces the capacity of endothelial cells to maintain intercellular contacts. This may become more marked when the vessels are exposed to high or turbulent flow, such as at bifurcations or in the beating heart, leading to fluid leakage or hemorrhages.
Platelet-derived growth factors (PDGFs) and their receptors (PDGFRs) contribute to normal heart development. Deficient or abnormal expression of Pdgf and Pdgfr genes have a negative impact on cardiac development and function. The cellular effects of PDGFs in the hearts of Pdgf/Pdgfr mutants and the pathogenesis of the resulting abnormalities are poorly understood, but different PDGF isoforms induce varying effects. Here, we generated three new transgenic mouse types which complete a set of studies, where all different PDGF ligands have been expressed under the same heart specific alpha-myosin heavy chain promoter. Transgenic expression of the natural isoforms of Pdgfa and Pdgfb resulted in isoform specific fibrotic reactions and cardiac hypertrophy. Pdgfa overexpression resulted in a severe fibrotic reaction with up to 8-fold increase in cardiac size, leading to lethal cardiac failure within a few weeks after birth. In contrast, Pdgfb overexpression led to focal fibrosis and moderate cardiac hypertrophy. As PDGF-A and PDGF-B have different affinity for the two PDGF receptors, we analyzed the expression of the receptors and the histology of the fibrotic hearts. Our data suggest that the stronger fibrotic effect generated by Pdgfa overexpression was mediated by Pdgfrα in cardiac interstitial mesenchymal cells, i.e. the likely source of extracellular matrix depostion and fibrotic reaction. The apparent sensitivity of the heart to ectopic PDGFRα agonists supports a role for endogenous PDGFRα agonists in the pathogenesis of cardiac fibrosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.