The feasibility of the laser surface alloying of magnesium base alloys with aluminum, copper, nickel and silicon has been shown in this work. By laser alloying with these elements, using a 5 kW CO2-laser, the hardness of several magnesium base alloys can be increased to values above 250 HV0.1. Melted depths from 700–1200 μm and alloying contents from 15–55 at % were achieved. The wear resistance of the alloyed surface layers was examined using the scratch test method. Investigations on the corrosion behavior of the layers were performed using the salt water immersion test. The results of this investigation showed that the greatest improvement in wear resistance occurred for copper alloyed layers, whereas aluminum alloyed layers showed a superior corrosion resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.