This work presents measurements of the local H ii environment metallicities of core-collapse supernovae (SNe) within a luminosity distance of 30 Mpc. 76 targets were observed at the Isaac Newton Telescope and environment metallicities could be measured for 65 targets using the N2 and O3N2 strong emission line method. The cumulative distribution functions (CDFs) of the environment metallicities of Type Ib and Ic SNe tend to higher metallicity than Type IIP, however Type Ic are also present at lower metallicities whereas Type Ib are not. The Type Ib frequency distribution is narrower (standard deviation ∼0.06 dex) than the Ic and IIP distributions (∼0.15 dex) giving some evidence for a significant fraction of single massive progenitor stars; the low metallicity of Type Ic suggests a significant fraction of compact binary progenitors. However, both the Kolmogorov-Smirnov test and the Anderson-Darling test indicate no statistical significance for a difference in the local metallicities of the three SN types. Monte Carlo simulations reveal a strong sensitivity of these tests to the uncertainties of the derived metallicities. Given the uncertainties of the strong emission methods, the applicability of the tests seems limited. We extended our analysis with the data of the Type Ib/Ic/IIP SN sample from Galbany et al. (2018). The CDFs created with their sample confirm our CDFs very well. The statistical tests, combining our sample and the Galbany et al. (2018) sample, indicate a significant difference between Type Ib and Type IIP with <5 per cent probability that they are drawn from the same parent population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.