Ideas for quality controls used in establishing a quality assurance program when introducing FFF beams into the clinical environment are given here, keeping them similar to those used for standard FF beams. By following the suggestions in this report, the authors foresee that the introduction of FFF beams into a clinical radiotherapy environment will be as safe and well controlled as standard beam modalities using the existing guidelines.
We have synthesized gadolinium oxysulfide nanoparticles (NPs) doped with other lanthanides (Eu(3+), Er(3+), Yb(3+)) via a hydroxycarbonate precursor precipitation route followed by a sulfuration process under a H2S-Ar atmosphere at 750 °C in order to propose new multimodal nanoplatforms for Magnetic Resonance (MR), X-ray and photoluminescence imaging. Gd2O2S:Eu(3+) NPs strongly absorb near UV (≈ 300-400 nm) and re-emit strong red light (624 nm). They can be easily internalized by cancer cells, and imaged by epifluorescence microscopy under excitation in the NUV (365 nm). They are not cytotoxic for living cells up to 100 μg mL(-1). Consequently, they are well adapted for in vitro imaging on cell cultures. Gd2O2S:Eu(3+) NPs also show strong transverse relaxivity and strong X-ray absorption allowing their use as contrast agents for T2-weighted MRI and X-ray tomography. Our study shows that Gd2O2S:Eu(3+) NPs are considerably better than commercial Ferumoxtran-10 NPs as negative contrast agents for MRI. Upconversion emission of Gd2O2S:Er; Yb (1; 8%) NPs under infrared excitation (λ(ex) = 980 nm) shows mainly red emission (≈ 650-680 nm). Consequently, they are more specifically designed for in vivo deep fluorescence imaging, because both excitation and emission are located inside the "transparency window" of biological tissues (650-1200 nm). Magnetic relaxivity and X-ray absorption behaviors of Gd2O2S:Er; Yb NPs are almost similar to Gd2O2S:Eu(3+) NPs.
The purpose of this study was to determine the benefit of high dose rate endobronchial brachytherapy in the treatment of obstructive lung cancer. Between September 1990 and March 1995, 189 patients with bronchogenic carcinoma were treated with high dose rate endobronchial brachytherapy. Most patients (69.3%) had received prior treatment and presented with symptomatic bronchial obstruction due to either recurrent or residual endobronchial disease. A small group (12%) was medically unfit for either surgical resection or thoracic radiotherapy and benefited from endobronchial brachytherapy alone for small endobronchial tumours. The remainder of the patients had not been treated previously and endobronchial brachytherapy was performed for life-threatening symptoms requiring emergency obstruction relief before other therapy. Treatment was performed weekly and consisted of three to four 8 to 10 Gy fractions at a radius of 10 mm from the centre of the source. Major symptomatic relief was obtained for haemoptysis (74%), dyspnoea (54%), and cough (54%). Complete endoscopic response was observed in 54% of cases. Median survival was 7 months for the entire group. For small, strictly endobronchial tumours, complete response rate was 96%, median survival 17 months, and 30 month survival 46%, with a plateau starting at 18 months. Grade 3 to 4 toxicities occurred at a rate of 17% and included massive haemoptysis (n=13), bronchial stenosis (n=12), soft tissue necrosis (n=8), and bronchial fistula (n=3). By univariate analysis, no factor was found to be predictive of late pulmonary toxicity. The present study confirms the usefulness of endobronchial brachytherapy in alleviating symptoms caused by endobronchial recurrence of bronchogenic carcinoma. In addition, this therapy can be tried with curative intent in patients who present with small endobronchial tumours and are not candidates for other forms of therapy.
Introduction: The use of flattening filter free (FFF) beams generated by standard linear accelerators is increasing in the clinical practice. The radiation intensity peaked toward the beam central axis is properly managed in the optimization process of treatment planning through intensity modulation. Specific FFF parameters for profile analysis, as unflatness and slope for FFF beams, based on the renormalization factor concept has been introduced for quality assurance purposes. Recently, Halcyon, an O-ring based linear accelerator equipped with a 6 MV FFF beam only has been introduced by Varian. Methods: Renormalization factors and related fit parameters according to Fogliata et al. ["Definition of parameters for quality assurance of FFF photon beams in radiation therapy," Med. Phys. 39, 6455-6464 (2012)] have been evaluated for the 6 MV FFF beam generated by Halcyon units. The Halcyon representative beam data provided by Varian were used. Dose fall-off at the field edges was matched with an unflattened beam generated by a 6 MV from a TrueBeam linac. Consistency of the results was evaluated against measurements on a clinical Halcyon unit, as well as a TrueBeam 6 MV FFF for comparison. Results: The five parameters in the analytical equation for estimating the renormalization factor were determined with an R 2 of 0.997. The comparison of the unflatness parameters between the Halcyon representative and hospital beam data was consistent within a range of 0.6%. Consistently with the computed parameters, the Halcyon profiles resulted in a less pronounced peak than TrueBeam. Conclusion: Renormalization factors and related fit parameters from the 6 MV FFF beam generated by the Varian Halcyon unit are provided.
BackgroundTo evaluate the feasibility and efficacy of Stereotactic body radiation therapy (SBRT) for primary liver lesions and liver metastases treated with linear accelerators with or without rotational Intensity Modulated RadioTherapy (IMRT).MethodsPatients with either hepatocellular carcinoma, cholangiocarcinoma or metastatic liver lesions who had one to three lesions treated with SBRT in a single institution were retrospectively reviewed. Tumor response was evaluated according to EASL criteria 3 months after SBRT completion using MRI and/or abdominal CT scan. Responses were categorised as: Stable Disease (SD), Partial Response (PR), Complete Response (CR), Local Progression or Distant Progression in cases of new intra-hepatic lesions out-of-field or extra-hepatic metastases. Local Control (LC), Progression Free Survival (PFS), Overall Survival (OS) and treatment-related toxicities are reported.ResultsBetween 2007 and 2012, 20 patients with a total of 24 lesions were treated with SBRT. Fourteen patients presented hepatocellular carcinoma (HCC), the others had either metastatic lesions from colorectal cancer (CRC) or cholangiocarcinoma. The median diameter of the lesions was 23 mm (5–98).The dose per fraction ranged from 6 to 20 Gy with a median total dose of 60 Gy (range: 36–60 Gy). The dose was prescribed to the 80% isodose line covering the PTV.The median follow-up was 24 months (15.7-29.7).The actuarial LC rate was 78% for patients with HCC and 83% for those with adenocarcinoma and cholangiocarcinoma. Median OS was 37 months and OS rates were 83% at 12 and 24 months for HCC and 100% for adenocarcinoma. PFS was 54% for HCC and 50% for other types of tumors at 24 months.Acute grade 3–4 toxicities occurred in 2 patients; a small proportion of the other patients experienced grade 1 or 2 toxicities.ConclusionsSBRT provides excellent local control with minimal side effects in selected patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.