Dedicated to Professor Horst P. Strunk on the occasion of his 65th birthday PACS 62.20Fe, 61.50Ks, 61.43Dq, 63.20Mt, 61.72Ff, 68.37Hk The deformation mechanisms of silicon {001} surfaces during nanoscratching were found to depend strongly on the loading conditions. Nanoscratches with increasing load were performed at 2 µm/s (low velocity) and 100 µm/s (high velocity). The load-penetration-distance curves acquired during the scratching process at low velocity suggests that two deformation regimes can be defined, an elasto-plastic regime at low loads and a fully plastic regime at high loads. High resolution scanning electron microscopy of the damaged location shows that the residual scratch morphologies are strongly influenced by the scratch velocity and the applied load. Micro-Raman spectroscopy shows that after pressure release, the deformed volume inside the nanoscratch is mainly composed of amorphous silicon and Si-XII at low scratch speeds and of amorphous silicon at high speeds. Transmission electron microscopy shows that Si nanocrystals are embedded in an amorphous matrix at low speeds, whereas at high speeds the transformed zone is completely amorphous. Furthermore, the extend of the transformed zone is almost independent of the scratching speed and is delimited by a dislocation rich area that extends about as deep as the contact radius into the surface. To explain the observed phase and defect distribution a contact mechanics based decompression model that takes into account the load, the velocity, the materials properties and the contact radius in scratching is proposed. It shows that the decompression rate is higher at low penetration depth, which is consistent with the observation of amorphous silicon in this case. The stress field under the tip is computed using an elastic contact mechanics model based on Hertz's theory. The model explains the observed shape of the transformed zone and suggests that during load increase, phase transformation takes place prior to dislocation nucleation.
In this paper, a new route for a selective deposition of thin oxide by atomic layer deposition is discussed. The proposed process is using super cycles made of an additional plasma etching step in a standard plasma enhanced atomic layer deposition (PEALD) process. This allows the selective growth of a thin oxide on a metal substrate without a specific surface deactivation by means of self assembled monolayer. It is shown that adding a small amount of NF 3 etching gas to an oxygen plasma gas every eight cycles of the PEALD process helps to fully remove the Ta 2 O 5 layer on Si and/or SiO 2 surface while keeping few nanometers of Ta 2 O 5 on the TiN substrate. NF 3 addition is also used to increase the incubation time before Ta 2 O 5 growth on Si or SiO 2 substrate. In this way, a selective deposition of Ta 2 O 5 on the TiN substrate is obtained with properties (density, leakage current…) similar to the ones obtained in a conventional PEALD mode. Hence, the authors demonstrate that a future for selective deposition could be a process using both PEALD and atomic layer etching. V
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.