BackgroundFor treatment of the entire cranium using passive scattering proton therapy (PSPT) compensators are often employed in order to reduce lens and cochlear exposure. We sought to assess the advantages and consequences of utilizing compensators for the treatment of the whole brain as a component of craniospinal radiation (CSI) with PSPT. Moreover, we evaluated the potential benefits of spot scanning beam delivery in comparison to PSPT.MethodsPlanning computed tomography scans for 50 consecutive CSI patients were utilized to generate passive scattering proton therapy treatment plans with and without Lucite compensators (PSW and PSWO respectively). A subset of 10 patients was randomly chosen to generate scanning beam treatment plans for comparison. All plans were generated using an Eclipse treatment planning system and were prescribed to a dose of 36 Gy(RBE), delivered in 20 fractions, to the whole brain PTV. Plans were normalized to ensure equal whole brain target coverage. Dosimetric data was compiled and statistical analyses performed using a two-tailed Student’s t-test with Bonferroni corrections to account for multiple comparisons.ResultsWhole brain target coverage was comparable between all methods. However, cribriform plate coverage was superior in PSWO plans in comparison to PSW (V95%; 92.9 ± 14 vs. 97.4 ± 5, p < 0.05). As predicted, PSWO plans had significantly higher lens exposure in comparison to PSW plans (max lens dose Gy(RBE): left; 24.8 ± 0.8 vs. 22.2 ± 0.7, p < 0.05, right; 25.2 ± 0.8 vs. 22.8 ± 0.7, p < 0.05). However, PSW plans demonstrated no significant cochlear sparing vs. PSWO (mean cochlea dose Gy(RBE): 36.4 ± 0.2 vs. 36.7 ± 0.1, p = NS). Moreover, dose homogeneity was inferior in PSW plans in comparison to PSWO plans as reflected by significant alterations in both whole brain and brainstem homogeneity index (HI) and inhomogeneity coefficient (IC). In comparison to both PSPT techniques, multi-field optimized intensity modulated (MFO-IMPT) spot scanning treatment plans displayed superior sparing of both lens and cochlea (max lens: 12.5 ± 0.6 and 12.9 ± 0.7 right and left respectively; mean cochlea 28.6 ± 0.5 and 27.4 ± 0.2), although heterogeneity within target volumes was comparable to PSW plans.ConclusionsFor PSPT treatments, the addition of a compensator imparts little clinical advantage. In contrast, the incorporation of spot scanning technology as a component of CSI treatments, offers additional normal tissue sparing which is likely of clinical significance.
Purpose
To test our hypothesis that, for young young children with intracranial tumors, proton radiotherapy in a high-income country does not reduce the risk of a fatal subsequent malignant neoplasm (SMN) compared with photon radiotherapy in low- and middle-income countries.
Materials and Methods
We retrospectively selected 9 pediatric patients with low-grade brain tumors who were treated with 3-dimensional conformal radiation therapy in low- and middle-income countries. Images and contours were deidentified and transferred to a high-income country proton therapy center. Clinically commissioned treatment planning systems of each academic hospital were used to calculate absorbed dose from the therapeutic fields. After fusing supplemental computational phantoms to the patients' anatomies, models from the literature were applied to calculate stray radiation doses. Equivalent doses were determined in organs and tissues at risk of SMNs, and the lifetime attributable risk of SMN mortality (LAR) was predicted using a dose-effect model. Our hypothesis test was based on the average of the ratios of LARs from proton therapy to that of photon therapy
Results
Proton therapy reduced the equivalent dose in organs at risk for SMNs and LARs compared with photon therapy for which the for the cohort was 0.69 ± 0.10, resulting in the rejection of H0 (P < .001, α = 0.05). We observed that the younger children in the cohort (2-4 years old) were at a factor of approximately 2.5 higher LAR compared with the older children (8-12 years old).
Conclusion
Our findings suggest that proton radiotherapy has the strong potential of reducing the risk of fatal SMNs in pediatric patients with intracranial tumors if it were made available globally.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.