We quantify the importance of mass accretion during active galactic nuclei (AGN) phases in the growth of supermassive black holes (BHs) by comparing the mass function of black holes in the Local Universe with that expected from AGN relics, which are black holes grown entirely with mass accretion during AGN phases. The local BH mass function (BHMF) is estimated by applying the well-known correlations between BH mass, bulge luminosity and stellar velocity dispersion to galaxy luminosity and velocity functions. We find that different correlations provide the same BHMF only if they have the same intrinsic dispersion. The density of supermassive black holes in the Local Universe that we estimate is ρ BH = 4.6 +1.9 −1.4 h 2 0.7 × 10 5 M Mpc −3 . The relic BHMF is derived from the continuity equation with the only assumption that AGN activity is due to accretion on to massive BHs and that merging is not important. We find that the relic BHMF at z = 0 is generated mainly at z < 3 where the major part of the growth of a BH takes place. Moreover, BH growth is antihierarchical in the sense that smaller BHs (M BH < 10 7 M ) grow at lower redshifts (z < 1) with respect to more massive ones (z ∼ 1-3). Unlike previous work, we find that the BHMF of AGN relics is perfectly consistent with the local BHMF, indicating that local BHs were mainly grown during AGN activity. This agreement is obtained while satisfying, at the same time, the constraints imposed from the X-ray background (XRB). The comparison between the local and relic BHMFs also suggests that the merging process is not important in shaping the relic BHMF, at least at low redshifts (z < 3), and allows us to estimate the average radiative efficiency (ε), the ratio between emitted and Eddington luminosity (λ) and the average lifetime of active BHs. Our analysis thus suggests the following scenario: local BHs grew during AGN phases in which accreting matter was converted into radiation with efficiencies ε = 0.04-0.16 and emitted at a fraction λ = 0.1-1.7 of the Eddington luminosity. The average total lifetime of these active phases ranges from 4.5 × 10 8 yr for M BH < 10 8 M to 1.5 × 10 8 yr for M BH > 10 9 M , but can become as large as ∼10 9 yr for the lowest acceptable ε and λ values.
We present a detailed and self-consistent modeling of the cosmic X-ray background (XRB) based on the most up-to-date X-ray luminosity functions (XLF) and evolution of Active Galactic Nuclei (AGN). The large body of observational results collected by soft (0.5-2 keV) and hard (2-10 keV) X-ray surveys are used to constrain at best the properties of the Compton-thin AGN population and its contribution to the XRB emission. The number ratio R between moderately obscured (Compton-thin) AGN and unobscured AGN is fixed by the comparison between the soft and hard XLFs, which suggests that R decreases from 4 at low luminosities to 1 at high luminosities. From the same comparison there is no clear evidence of an evolution of the obscured AGN fraction with redshift. The distribution of the absorbing column densities in obscured AGN is determined by matching the soft and hard source counts. A distribution rising towards larger column densities is able to reproduce the soft and hard AGN counts over about 6 dex in flux. The model also reproduces with excellent accuracy the fraction of obscured objects in AGN samples selected at different X-ray fluxes. The integrated emission of the Compton-thin AGN population is found to underestimate the XRB flux at about 30 keV, calling for an additional population of extremely obscured (Compton-thick) AGN. Since the number of Compton-thick sources required to fit the 30 keV XRB emission strongly depends on the spectral templates assumed for unobscured and moderately obscured AGN, we explored the effects of varying the spectral templates. In particular, in addition to the column density distribution, we also considered a distribution in the intrinsic powerlaw spectral indices of variable width. In our baseline model a Gaussian distribution of photon indices with mean Γ = 1.9 and dispersion σ Γ = 0.2 is assumed. This increases the contribution of the Compton-thin AGN population to the 30 keV XRB intensity by ∼30% with respect to the case of null dispersion (i.e. a single primary AGN powerlaw with Γ = 1.9) but is not sufficient to match the 30 keV XRB emission. Therefore a population of heavily obscured -Compton-thick-AGN, as large as that of moderately obscured AGN, is required to fit the residual background emission. Remarkably, the fractions of Compton-thick AGN observed in the Chandra Deep Field South and in the first INTEGRAL and Swift catalogs of AGN selected above 10 keV are in excellent agreement with the model predictions.
We present the deepest 100 to 500 μm far-infrared observations obtained with the Herschel Space Observatory as part of the GOODS-Herschel key program, and examine the infrared (IR) 3-500 μm spectral energy distributions (SEDs) of galaxies at 0 < z < 2.5, supplemented by a local reference sample from IRAS, ISO, Spitzer, and AKARI data. We determine the projected star formation densities of local galaxies from their radio and mid-IR continuum sizes. We find that the ratio of total IR luminosity to rest-frame 8 μm luminosity, IR8 (≡L tot IR /L 8 ), follows a Gaussian distribution centered on IR8 = 4 (σ = 1.6) and defines an IR main sequence for star-forming galaxies independent of redshift and luminosity. Outliers from this main sequence produce a tail skewed toward higher values of IR8. This minority population (<20%) is shown to consist of starbursts with compact projected star formation densities. IR8 can be used to separate galaxies with normal and extended modes of star formation from compact starbursts with high-IR8, high projected IR surface brightness (Σ IR > 3 × 10 10 L kpc −2 ) and a high specific star formation rate (i.e., starbursts). The rest-frame, UV-2700 Å size of these distant starbursts is typically half that of main sequence galaxies, supporting the correlation between star formation density and starburst activity that is measured for the local sample. Locally, luminous and ultraluminous IR galaxies, (U)LIRGs (L tot IR ≥ 10 11 L ), are systematically in the starburst mode, whereas most distant (U)LIRGs form stars in the "normal" main sequence mode. This confusion between two modes of star formation is the cause of the so-called "mid-IR excess" population of galaxies found at z > 1.5 by previous studies. Main sequence galaxies have strong polycyclic aromatic hydrocarbon (PAH) emission line features, a broad far-IR bump resulting from a combination of dust temperatures (T dust ∼ 15-50 K), and an effective T dust ∼ 31 K, as derived from the peak wavelength of their infrared SED. Galaxies in the starburst regime instead exhibit weak PAH equivalent widths and a sharper far-IR bump with an effective T dust ∼ 40 K. Finally, we present evidence that the mid-to-far IR emission of X-ray active galactic nuclei (AGN) is predominantly produced by star formation and that candidate dusty AGNs with a power-law emission in the mid-IR systematically occur in compact, dusty starbursts. After correcting for the effect of starbursts on IR8, we identify new candidates for extremely obscured AGNs.
We present source catalogs for the 4 Ms Chandra Deep Field-South (CDF-S), which is the deepest Chandra survey to date and covers an area of 464.5 arcmin 2 . We provide a main Chandra source catalog, which contains 740 X-ray sources that are detected with WAVDETECT at a false-positive probability threshold of 10 −5 in at least one of three X-ray bands (0.5-8 keV, full band; 0.5-2 keV, soft band; and 2-8 keV, hard band) and also satisfy a binomial-probability source-selection criterion of P < 0.004 (i.e., the probability of sources not being real is less than 0.004); this approach is designed to maximize the number of reliable sources detected. A total of 300 main-catalog sources are new compared to the previous 2 Ms CDF-S main-catalog sources. We determine X-ray source positions using centroid and matched-filter techniques and obtain a median positional uncertainty of ≈ 0.42 ′′ . We also provide a supplementary catalog, which consists of 36 sources that are detected with WAVDETECT at a false-positive probability threshold of 10 −5 , satisfy the condition of 0.004 < P < 0.1, and have an optical counterpart with R < 24. Multiwavelength identifications, basic optical/infrared/radio photometry, and spectroscopic/photometric redshifts are provided for the X-ray sources in the main and supplementary catalogs. 716 (≈ 97%) of the 740 main-catalog sources have multiwavelength counterparts, with 673 (≈ 94% of 716) having either spectroscopic or photometric redshifts. The 740 main-catalog sources span broad ranges of full-band flux and 0.5-8 keV luminosity; the 300 new main-catalog sources span similar ranges although they tend to be systematically lower. Basic analyses of the X-ray and multiwavelength properties of the sources indicate that > 75% of the main-catalog sources are AGNs; of the 300 new main-catalog sources, about 35% are likely normal and starburst galaxies, reflecting the rise of normal and starburst galaxies at the very faint flux levels uniquely accessible to the 4 Ms CDF-S. Near the center of the 4 Ms CDF-S (i.e., within an off-axis angle of 3 ′ ), the observed AGN and galaxy source densities have reached 9800 +1300 −1100 deg −2 and 6900 +1100 −900 deg −2 , respectively. Simulations show that our main catalog is highly reliable and is reasonably complete. The mean backgrounds (corrected for vignetting and exposure-time variations) are 0.063 and 0.178 count Ms −1 pixel −1 (for a pixel size of 0.492 ′′ ) for the soft and hard bands, respectively; the majority of the pixels have zero background counts. The 4 Ms CDF-S reaches on-axis flux limits of ≈ 3.2 × 10 −17 , 9.1 × 10 −18 , and 5.5 × 10 −17 erg cm −2 s −1 for the full, soft, and hard bands, respectively. An increase in the CDF-S exposure time by a factor of ≈ 2-2.5 would provide further significant gains and probe key unexplored discovery space.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.