The paper describes a sensor head for long-term high-precision measurements of very small deflections of a diaphragm used for pressure gauges. High precision deformation measurement is assured by using a fibre Fabry-Pérot interferometer sensor; identification of zero-point changes, and thus, long-term stable measurement is achieved by a specially designed absolute interferometer sensor. Several fibre optic solutions based on fibre Fabry-Pérot technique have been investigated to find out a reliable sensor design. The presented sensor design has reached prototype status and allows to measure unambiguously static deformations with high precision. In order to evaluate repeatability and possible changes of zero-point reference if the head has been disconnected, validation of the described pressure gauge has been started. This validation work includes calibration and enables to evaluate possible drift effects, and to identify mechanical or thermal hysteresis.
Geotechnical measurements are producing various data which are used for interpretation and e.g. safety calculation. The reliability of such data is of most importance as every decision on civil engineering action needed is based on this data. Known and also unknown influences changing data are a basic demand for deeper investigation and research. In present time we have limited tools only to minimize perturbing influences. One of these demands -the long-term development of data also called long-term stability -is described in this paper. The paper describes a sensor head for long-term high-precision measurements of very small deflections of a diaphragm used for pressure gauges. High precision deformation measurement is assured by using a fiber Fabry-Pérot interferometer sensor; identification of zero-point changes, and thus, long-term stable measurement is achieved by a specially designed absolute interferometer sensor. Several fiber optic solutions based on fiber Fabry-Pérot technique have been investigated to find out a reliable sensor design. The presented sensor design has reached prototype status and allows to measure unambiguously static deformations with high precision. In order to evaluate repeatability and possible changes of zero-point reference if the head has been disconnected, validation of the described pressure gauge has been started. This validation work includes calibration and enables to evaluate possible drift effects, and to identify mechanical or thermal hysteresis. Thus, the highlight in this paper is the observation and measurement of zero-point development over time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.