Human activity understanding includes activity recognition and activity pattern discovery. Monitoring human activity and finding abnormality in their activities used by many field like medical applications, security systems etc. Basically it helps and support in decision making systems. Mining user activity from web logs can helps in finding hidden information about the user access pattern which reveals the web access behaviour of the users. Clustering and Classification techniques are used for web user identification. Clustering is the task of grouping similar patterns for web user identification. Classification is the process of classifying web patterns for user identification. In this paper we have implemented the existing works and discussed the results here to find the limitations. In existing methods, many data mining techniques were introduced for web user behaviour identification. But, the user identification accuracy was not improved and time consumption was not reduced. Our objective is to study the existing work and explore the possibility to improve the identification accuracy and reduce the time consumption using machine learning and deep learning techniques
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.