Upon tightening new regulations, the demand for using smart wireless sensing for health, safety, and surveillance applications of nuclear installations is growing rapidly. To help with the developments, this paper describes the design of a practical small-scaled wireless sensor network (WSN) that allows a smart real-time monitoring of radiation levels at nuclear facilities. A wireless system compiled with a radiation sensor and associated peripherals been developed and implemented upon ZigBee technology using TI CC2530 chip. The radiation sensor uses a Geiger Muller tube as a reliable detector for the radioactive particulates in the gaseous effluent vented from nuclear facilities. The WSN allows the operators to record and control the radiation levels emitted to the environment and it is supported with a warning system, for the early detection of radiation release. However, building a reliable wireless sensing system with an effective coverage, especially for indoor applications, requires professional planning and proper investigation. In this paper, a procedure to investigate the wireless sensing coverage is reported where a ray-tracing simulator is adopted to enable the wireless node placement prior to the deployment. A real test scenario has been implemented based on the built wireless node to examine network coverage inside a 60-m hallway and results have been compared with simulations showing a 100% packet reception ratio.Index Terms-Wireless sensor networks, ZigBee, nuclear power plant (NPP), environmental monitoring, radiation sensor node.
Recently, Wireless Sensor Network (WSN) deployments for on-line monitoring of the nuclear practices have been addressed as incremental and experimental networks. The paper examines the performance of IEEE802.15.4/Zigbee based WSN for nuclear medicine practice using OPNET Modeler simulation tool. We introduce a reliable integrated remote sensing solution based on Zigbee technology for nuclear medicine practices, to detect radiation exposure, and contamination in the production, diagnostic, and therapeutic area. Different scenarios are analyzed to check the network coverage using star, tree, and mesh network routing configurations. The simulation results focus on the Quality of Service (QOS) related metrics; throughput, load, and an end to end delay as an indicator on the network optimal performance and to select the best suitable combination out of the proposed network architectures.
The safe and secure designs of any nuclear power plant together with its cost-effective operation without accidents are leading the future of nuclear energy. As a result, the Reliability, Availability, Maintainability, and Safety analysis of NPP systems is the main concern for the nuclear industry. But the ability to assure that the safety-related system, structure, and components could meet the safety functions in different events to prevent the reactor core damage requires new reliability analysis methods and techniques. The Fault Tree Analysis (FTA) is one of the most widely used logic and probabilistic techniques in system reliability assessment nowadays. The Dynamic fault tree technique extends the conventional static fault tree (SFT) by considering the time requirements to model and evaluate the nuclear power plant safety systems. Thus this paper focuses on developing a new Dynamic Fault Tree for the Auxiliary Feed-water System (AFWS) in a pressurized water reactor. The proposed dynamic model achieves a more realistic and accurate representation of the AFWS safety analysis by illustrating the complex failure mechanisms including interrelated dependencies and Common Cause Failure (CCF). A Simulation tool is used to simulate the proposed dynamic fault tree model of the AFWS for the quantitative analysis. The more realistic results are useful to establish reliability cantered maintenance program in which the maintenance requirements are determined based on the achievement of system reliability goals in the most cost-effective manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.