The random-phase-approximation semiclassical scheme for description of plasmon excitations in large metallic nanospheres, with radius range 10-60 nm, is formulated in an all-analytical version. The spectrum of plasmons is determined including both surface and volume type excitations and their mutual connections. The various channels for damping of surface plasmons are evaluated and the relevant resonance shifts are compared with the experimental data for metallic nanoparticles of different size located in dielectric medium or on the semiconductor substrate. The strong enhancement of energy transfer from the surface plasmon oscillations to the substrate semiconductor is explained in the regime of a near-field coupling in agreement with recent experimental observations for metallically nanomodified photo-diode systems.
Theoretical description of oscillations of electron liquid in large metallic nanospheres (with radius of few tens nm) is formulated within random-phase-approximation semiclassical scheme. Spectrum of plasmons is determined including both surface and volume type excitations. It is demonstrated that only surface plasmons of dipole type can be excited by homogeneous dynamical electric field. The Lorentz friction due to irradiation of electro-magnetic wave by plasmon oscillations is analyzed with respect to the sphere dimension. The resulting shift of resonance frequency turns out to be strongly sensitive to the sphere radius. The form of e-m response of the system of metallic nanospheres embedded in the dielectric medium is found. The theoretical predictions are verified by a measurement of extinction of light due to plasmon excitations in nanosphere colloidal water solutions, for Au and Ag metallic components with radius from 10 to 75 nm. Theoretical predictions and experiments clearly agree in the positions of surface plasmon resonances and in an emergence of the first volume plasmon resonance in the e-m response of the system for limiting big nanosphere radii, when dipole approximation is not exact.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.