Orthonormal M-band wavelet bases have been constructed and applied by several authors. This paper makes three main contributions. First, it generalizes the minimal length Kregular 2-band wavelets of Daubechies to the M-band case by deriving explicit formulas for K-regular M-band scaling filters. Several equivalent characterizations of K-regularity are given and their significance explained. Second, two approaches to the construction of the (M-I) wavelet filters and associated wavelet bases are described; one relies on a state-space characterization with a novel technique to obtain the unitary wavelet filters; the other uses a factorization approach. Third, this paper gives a set of necessary and sufficient condition on the M-band scaling filter for it to generate an orthonormal wavelet basis. The conditions are very similar to those obtained by Cohen and Lawton for 2-band wavelets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.