Historically, medical imaging has been a qualitative or semi-quantitative modality. It is difficult to quantify what can be seen in an image, and to turn it into valuable predictive outcomes. As a result of advances in both computational hardware and machine learning algorithms, computers are making great strides in obtaining quantitative information from imaging and correlating it with outcomes. Radiomics, in its two forms “handcrafted and deep,” is an emerging field that translates medical images into quantitative data to yield biological information and enable radiologic phenotypic profiling for diagnosis, theragnosis, decision support, and monitoring. Handcrafted radiomics is a multistage process in which features based on shape, pixel intensities, and texture are extracted from radiographs. Within this review, we describe the steps: starting with quantitative imaging data, how it can be extracted, how to correlate it with clinical and biological outcomes, resulting in models that can be used to make predictions, such as survival, or for detection and classification used in diagnostics. The application of deep learning, the second arm of radiomics, and its place in the radiomics workflow is discussed, along with its advantages and disadvantages. To better illustrate the technologies being used, we provide real-world clinical applications of radiomics in oncology, showcasing research on the applications of radiomics, as well as covering its limitations and its future direction.
MRI-based tumor response prediction to neoadjuvant systemic therapy (NST) in breast cancer patients is increasingly being studied using radiomics with outcomes that appear to be promising.The aim of this study is to systematically review the current literature and reflect on its quality. Methods: PubMed and EMBASE databases were systematically searched for studies investigating MRI-based radiomics for tumor response prediction. Abstracts were screened by two reviewers independently. The quality of the radiomics workflow of eligible studies was assessed using the Radiomics Quality Score (RQS). An overview of the methodologies used in steps of the radiomics workflow and current results are presented. Results: Sixteen studies were included with cohort sizes ranging from 35 to 414 patients. The RQS scores varied from 0 % to 41.2 %. Methodologies in the radiomics workflow varied greatly, especially region of interest segmentation, features selection, and model development with heterogeneous outcomes as a result. Seven studies applied univariate analysis and nine studies applied multivariate analysis. Most studies performed their analysis on the pretreatment dynamic contrast-enhanced T1-weighted sequence. Entropy was the best performing individual feature with AUC values ranging from 0.83 to 0.85. The best performing multivariate prediction model, based on logistic regression analysis, scored a validation AUC of 0.94. Conclusion: This systematic review revealed large methodological heterogeneity for each step of the MRI-based radiomics workflow, consequently, the (overall promising) results are difficult to compare. Consensus for standardization of MRI-based radiomics workflow for tumor response prediction to NST in breast cancer patients is needed to further improve research. Recent developments in tumor response prediction to NST show promising results in objectively interpreting MR images (usually from pre-and mid-treatment exams) using quantitative imaging analysis
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.