Secretion of Cl- requires the presence of a K+ conductance to hyperpolarize the cell, and to provide the driving force for Cl- exit via luminal Cl- channels. In the exocrine pancreas Cl- secretion is mediated by an increase in cytosolic Ca2+ ([Ca2+]i). Two types of Ca2+-activated K+ channels could be shown in pancreatic acinar cells of different species. However, there are no data on Ca2+-activated K+ channels in rat pancreatic acini. Here we examine the basolateral K+ conductance of freshly isolated rat pancreatic acinar cells in cell-attached and cell-excised patch-clamp experiments. Addition of carbachol (CCH, 1 micromol/l) to the bath led to the activation of very small conductance K+ channels in cell-attached patches (n=27), producing a noisy macroscopic outward current. The respective outward conductance increased significantly by a factor of 2.1+/-0.1 (n=27). Noise analysis revealed a Lorentzian noise component with a corner frequency (f(c)) of 30.3+/-3.5 Hz (n=19), consistent with channel activity in these patches. The estimated single-channel conductance was 1.5+/-0.4 pS (n=19). In cell-excised patches (inside out) from cells previously stimulated with CCH, channel activity was only observed in the presence of K+ in the bath solution. Under these conditions f(c) was 47.6+/-11.9 Hz (estimated single-channel conductance 1.1+/-0.2 pS, n=20). The current/voltage relationship of the noise showed weak inward rectification and the reversal potential shifted towards E(K+) when Na+ in the bath was replaced by K+. Channel activity in cell-excised patches was slightly reduced by 10 mmol/l Ba2+ (23.6+/-2.1% of the total outward current) and was completely absent when K+ in the bath was replaced by Na+. Reduction of the [Ca2+]i from 1 mmol/l to 1 micromol/l in cell-excised experiments decreased the current by 52.3+/-12.3% (n=5). Expression of K(v)LQT1, one of the possible candidates for a small-conductance K+ channel in rat pancreatic acinar cells, was shown by reverse transcriptase polymerase chain reaction (RT-PCR). In fact, a K(V)LQT-blocker (chromanol 293B) reduced channel activity in seven excised patches. These data suggest that CCH activates very small conductance K+ channels in rat pancreatic acinar cells, most likely via an increase in [Ca2+]i.
Acetylcholine-stimulated exocrine secretion of Cl- and water requires the concomitant activation of K+ channels. However, there has not been much investigation of the carbachol- (CCH-) activated K+ channel of rodent pancreatic acini. Here, in a study of rat pancreatic acini, we characterize a voltage-dependent, slowly activating outward current (I(Ks)) that is augmented by CCH. Intact acini were obtained by enzymatic digestion and fast-whole-cell patch-clamp was applied. With symmetrical [Cl-] (32 mmol/l) in the pipette and bath solution, acinar cells had resting membrane voltages of -45+/-0.8 mV (n=97) under current-clamp conditions. CCH (10 micromol/l), which is known to activate Cl- channels via a Ca2+-mediated pathway, sharply depolarized the membrane to -4+/-0.5 mV, which was more negative than E(Cl) (0 mV), and reversed it to -41+/-0.9 mV (n=83) by washout. A clamp voltage of 0 mV activated I(Ks) under control conditions (91+/-8.6 pA, n=83). During CCH application an increase of outward current was observed at 0 mV, and at -50 mV a marked increase of inward Cl current occurred. In the presence of CCH the slow activation of I(Ks) was rarely distinguishable because of interference by the huge Cl- conductance. During CCH washout and decrease of inward current, a persistent augmentation of I(Ks) was revealed (486+/-36.3 pA, n=83). I(Ks) and its augmentation were abolished by substituting K+ in the pipette solution with Cs+. Augmentation of I(Ks) was mimicked by applying ionomycin (0.1 micromol/l), a Ca2+ ionophore. Pharmacological blockers were tested. The chromanol 293B and clotrimazole blocked I(Ks) at micromolar concentrations (IC50=3 micromol/l and 9 micromol/l, respectively) and Ba2+ was a poor blocker (IC50=3 mmol/l). In the presence of CCH (0.2 micromol/l), the membrane was depolarized to around -20 mV and the addition of 293B (10 micromol/l) further depolarized the membrane by 11+/-3 mV (n=5). These data suggest the presence of I(Ks) channels in rat pancreatic acini and their muscarinic activation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.