X-ray diffraction, infrared absorption spectroscopy, and chemical investigation have been carried out on deproteinated samples of turkey leg tendon at different degrees of calcification. The inorganic phase consists of poorly crystalline B carbonated apatite. On increasing calcification, the apatite crystal size, as well as its thermal stability, increase while the relative magnesium content is reduced. On the other hand, synchrotron X-ray diffraction data clearly indicate that apatite lattice parameters do not change as the crystals get larger. At the last stage of calcification the crystal size, chemical composition, and thermal conversion of the apatite crystallites approximate those of bone samples, which have been examined for comparison. The results provide a quantitative relationship between relative magnesium content and extent of apatite conversion into B-tricalcium phosphate by heat treatment. Furthermore, they suggest that the smaller crystallites laid down inside the gap region of the collagen fibrils are richer in magnesium than the longer ones that fill the space between collagen fibrils.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.