International audienceMarine recreational fishing (MRF) is a high-participation activity with large economic value and social benefits globally, and it impacts on some fish stocks. Although reporting MRF catches is a European Union legislative requirement, estimates are only available for some countries. Here, data on numbers of fishers, participation rates, days fished, expenditures, and catches of two widely targeted species were synthesized to provide European estimates of MRF and placed in the global context. Uncertainty assessment was not possible due to incomplete knowledge of error distributions; instead, a semi-quantitative bias assessment was made. There were an estimated 8.7 million European recreational sea fishers corresponding to a participation rate of 1.6%. An estimated 77.6 million days were fished, and expenditure was €5.9 billion annually. There were higher participation, numbers of fishers, days fished and expenditure in the Atlantic than the Mediterranean, but the Mediterranean estimates were generally less robust. Comparisons with other regions showed that European MRF participation rates and expenditure were in the mid-range, with higher participation in Oceania and the United States, higher expenditure in the United States, and lower participation and expenditure in South America and Africa. For both northern European sea bass (Dicentrarchus labrax, Moronidae) and western Baltic cod (Gadus morhua, Gadidae) stocks, MRF represented 27% of the total removals. This study highlights the importance of MRF and the need for bespoke, regular and statistically sound data collection to underpin European fisheries management. Solutions are proposed for future MRF data collection in Europe and other regions to support sustainable fisheries management
The Patagonian longfin squid Loligo gahi undertakes horizontal ontogenetic migrations on the Falkland shelf: juveniles move from spawning grounds located in shallow, inshore waters (20–50 m depths) to feeding grounds near the shelf edge (200–350 m depths). Immature squid feed and grow in these offshore feeding grounds and, upon maturation, migrate back to inshore waters to spawn. The possible influence of environmental factors on L. gahi migrations was investigated using data from oceanographic transects, crossing the region of known L. gahi occurrence. They were made from the inshore waters of East Falkland eastwards to depths of 1250 m on a monthly basis from 1999 to 2001. Four main water types were found in the region: Shelf, Sub‐Antarctic Superficial and Antarctic Intermediate water masses, and Transient Zone waters. The inshore spawning grounds occur in the Shelf Water mass, whereas the feeding squid (medium‐sized immature and maturing individuals) were associated with the Transient Zone. The 5.5°C isotherm appeared to mark the limit of squid distribution into deeper waters in all seasons. Seasonal changes in water mass characteristics and location were found to be important for seasonal changes in L. gahi migrations on the Falkland shelf.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.